OPTIMAL TRANSPORTATION UNDER NONHOLONOMIC CONSTRAINTS

被引:44
|
作者
Agrachev, Andrei [1 ,2 ]
Lee, Paul [3 ]
机构
[1] Scuola Int Super Studi Avanzati, Int Sch Adv Studies, Trieste, Italy
[2] VA Steklov Math Inst, Moscow 119991, Russia
[3] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
关键词
OPTIMAL MASS TRANSPORTATION;
D O I
10.1090/S0002-9947-09-04813-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study Mongs's optimal transportation problem. where the cost, is given by an optimal control cost We prove the existence and uniqueness of all optimal map under certain regularly conditions oil the Lagrangian, absolute continuity of the measures with respect to Lebesgue, and most importantly the absence of sharp abnormal minimizers In particular, this result is applicable in the case of subriemannian manifolds with a 2-generating distribution and cost given by d(2), where d is the subriemannian distance Also, we discuss sonic properties of the optimal plan when abnormal minimizers are present Finally we consider Some examples of displacement Interpolation in the case of the Grushin plane
引用
收藏
页码:6019 / 6047
页数:29
相关论文
共 50 条
  • [1] OPTIMAL TRANSPORTATION WITH CAPACITY CONSTRAINTS
    Korman, Jonathan
    McCann, Robert J.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (03) : 1501 - 1521
  • [2] PREFACE: NONHOLONOMIC CONSTRAINTS IN MECHANICS AND OPTIMAL CONTROL THEORY
    de Leon, Manuel
    Marrero, Juan C.
    de Diego, David Martin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2010, 3 (01): : I - I
  • [3] STABILIZATION OF NONHOLONOMIC VEHICLES UNDER KINEMATIC CONSTRAINTS
    PAPPAS, GJ
    KYRIAKOPOULOS, KJ
    INTERNATIONAL JOURNAL OF CONTROL, 1995, 61 (04) : 933 - 947
  • [4] SWARM FORMATIONS UNDER NONHOLONOMIC AND NUMEROSITY CONSTRAINTS
    Fricke, Gregory K.
    Lieberman, Kevin M.
    Garg, Devendra P.
    PROCEEDINGS OF THE ASME 5TH ANNUAL DYNAMIC SYSTEMS AND CONTROL DIVISION CONFERENCE AND JSME 11TH MOTION AND VIBRATION CONFERENCE, DSCC 2012, VOL 1, 2013, : 475 - 481
  • [5] Trajectory Optimization for Systems Under Nonholonomic Constraints
    Arechavaleta, Gustavo
    COMPUTACION Y SISTEMAS, 2011, 14 (04): : 365 - 382
  • [6] Swarm formations under nonholonomic and numerosity constraints
    Fricke, Gregory K.
    Lieberman, Kevin M.
    Garg, Devendra P.
    ASME 2012 5th Annual Dynamic Systems and Control Conference Joint with the JSME 2012 11th Motion and Vibration Conference, DSCC 2012-MOVIC 2012, 2012, 1 : 475 - 481
  • [7] Globally-optimal whole body motion planning under nonholonomic constraints using dynamic programming
    Salvioli, Federico
    Capasso, Fabio
    Ferrentino, Enrico
    Chiacchio, Pasquale
    ACTA ASTRONAUTICA, 2022, 193 : 619 - 626
  • [8] NONHOLONOMIC CONSTRAINTS
    RAY, JR
    AMERICAN JOURNAL OF PHYSICS, 1966, 34 (05) : 406 - &
  • [9] Finding optimal tour schedules on transportation paths under extended time window constraints
    Stefan Bock
    Journal of Scheduling, 2016, 19 : 527 - 546
  • [10] Finding optimal tour schedules on transportation paths under extended time window constraints
    Bock, Stefan
    JOURNAL OF SCHEDULING, 2016, 19 (05) : 527 - 546