SISTA: Learning Optimal Transport Costs under Sparsity Constraints

被引:1
|
作者
Carlier, Guillaume [1 ]
Dupuy, Arnaud [2 ]
Galichon, Alfred [3 ]
Sun, Yifei [3 ]
机构
[1] Univ Paris 09, PSL, CEREMADE, Pl Marechal deLattre de Tassigny, F-75775 Paris 16, France
[2] Univ Luxembourg, Campus Kirchberg,6 Rue Richard Coudenhove Kalergi, L-1359 Luxembourg, Luxembourg
[3] Courant Inst, 251 Mercer St, New York, NY 10012 USA
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
MIGRATION;
D O I
10.1002/cpa.22047
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we describe a novel iterative procedure called SISTA to learn the underlying cost in optimal transport problems. SISTA is a hybrid between two classical methods, coordinate descent ("S"-inkhorn) and proximal gradient descent ("ISTA"). It alternates between a phase of exact minimization over the transport potentials and a phase of proximal gradient descent over the parameters of the transport cost. We prove that this method converges linearly, and we illustrate on simulated examples that it is significantly faster than both coordinate descent and ISTA. We apply it to estimating a model of migration, which predicts the flow of migrants using country-specific characteristics and pairwise measures of dissimilarity between countries. This application demonstrates the effectiveness of machine learning in quantitative social sciences. (c) 2022 Wiley Periodicals LLC.
引用
收藏
页码:1659 / 1677
页数:19
相关论文
共 50 条
  • [21] MAXIMUM LIKELIHOOD ESTIMATION UNDER PARTIAL SPARSITY CONSTRAINTS
    Routtenberg, Tirza
    Eldar, Yonina C.
    Tong, Lang
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 6421 - 6425
  • [22] GRAPH LEARNING UNDER SPARSITY PRIORS
    Maretic, Hermina Petric
    Thanou, Dorina
    Frossard, Pascal
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 6523 - 6527
  • [23] Empirical optimal transport under estimated costs: Distributional limits and statistical applications
    Hundrieser, Shayan
    Mordant, Gilles
    Weitkamp, Christoph A.
    Munk, Axel
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2024, 178
  • [24] Targeted Learning of Optimal Individualized Treatment Rules Under Cost Constraints
    Toth, Boriska
    van der Laan, Mark
    BIOPHARMACEUTICAL APPLIED STATISTICS SYMPOSIUM, VOL 3: PHARMACEUTICAL APPLICATIONS, 2018, : 1 - 22
  • [25] Experimental Validation of Entropy-Driven Swarm Exploration under Sparsity Constraints with Sparse Bayesian Learning
    Manss, Christoph
    Kuehner, Isabel
    Shutin, Dmitriy
    ENTROPY, 2022, 24 (05)
  • [26] Optimal parameters for image reconstruction in ghost imaging via sparsity constraints
    Lin, Huizu
    Sun, Shuai
    Jiang, Liang
    Du, Longkun
    Hu, Hongkang
    Liu, Weitao
    OPTICAL ENGINEERING, 2020, 59 (12)
  • [27] Controllability of Linear Dynamical Systems Under Input Sparsity Constraints
    Joseph, Geethu
    Murthy, Chandra R.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (02) : 924 - 931
  • [28] ISAR Imaging Under Group Sparsity Constraints Using ADMM
    Oz, Yusa
    Alp, Y. Kemal
    Yazgan-Erer, Isin
    2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,
  • [29] Randomized Algorithms for Distributed Nonlinear Optimization Under Sparsity Constraints
    Ravazzi, Chiara
    Fosson, Sophie M.
    Magli, Enrico
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2016, 64 (06) : 1420 - 1434
  • [30] OPTIMAL ADAPTIVE ESTIMATION OF LINEAR FUNCTIONALS UNDER SPARSITY
    Collier, Olivier
    Comminges, Laetitia
    Tsybakov, Alexandre B.
    Verzelen, Nicolas
    ANNALS OF STATISTICS, 2018, 46 (06): : 3130 - 3150