Intermittent chaotic spiking in the van der Pol-FitzHugh-Nagumo system with inertia

被引:6
|
作者
Ciszak, Marzena [1 ]
Balle, Salvador [2 ]
Piro, Oreste [2 ,3 ]
Marino, Francesco [1 ,4 ]
机构
[1] Ist Nazl Ottica, CNR, Via Sansone 1, I-50019 Sesto Fiorentino, Italy
[2] Inst Mediterrani Estudis Avancats, Dept Ecol & Marine Resources, IMEDEA, CSIC,UIB, Esporles, Spain
[3] Univ Illes Balears, Dept Fis, Km 7-5, E-07122 Palma De Mallorca, Spain
[4] Sez Firenze, INFN, Via Sansone 1, I-50019 Sesto Fiorentino, Italy
关键词
Mixed-mode oscillations; MIXED-MODE OSCILLATIONS; BIFURCATIONS; TURBULENCE; STATES;
D O I
10.1016/j.chaos.2022.113053
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The van der Pol-FitzHugh-Nagumo neuron model with inertia was shown to exhibit a chaotic mixed-mode dynamics composed of large-amplitude spikes separated by an irregular number of small-amplitude chaotic oscillations. In contrast to the standard 2D van der Pol-FitzHugh-Nagumo model driven by noise, the inter-spike intervals distribution displays a complex arrangement of sharp peaks related to the unstable periodic orbits of the chaotic attractor. For many ranges of parameters controlling the excitability of the system, we observe that chaotic mixed-mode states consist of lapses of nearly regular spiking interleaved by others of highly irregular one. We explore here the emergence of these structures and show their correspondence to the intermittent transitions to chaos. In fact, the average residence times in the nearly-periodic firing state, obey the same scaling law - as a function of the control parameter - than the one at the onset of type I intermittency for dynamical systems in the vicinity of a saddle node bifurcation. We hypothesize that this scenario is also present in a variety of slow-fast neuron models characterized by the coexistence of a two-dimensional fast manifold and a one-dimensional slow one.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Chaos control of chaotic limit cycles of real and complex van der Pol oscillators
    Mahmoud, GM
    Farghaly, AAM
    CHAOS SOLITONS & FRACTALS, 2004, 21 (04) : 915 - 924
  • [42] Regular and chaotic vibrations of van der Pol and Rayleigh oscillators driven by parametric excitation
    Warminski, Jerzy
    IUTAM SYMPOSIUM ON 50 YEARS OF CHAOS: APPLIED AND THEORETICAL, 2012, 5 : 78 - 87
  • [43] Chaotic Motions of the Duffing-Van der Pol Oscillator with External and Parametric Excitations
    Zhou, Liangqiang
    Chen, Fangqi
    SHOCK AND VIBRATION, 2014, 2014
  • [44] Chaotic dynamics of two Van der Pol-Duffing oscillators with Huygens coupling
    V. N. Belykh
    E. V. Pankratova
    Regular and Chaotic Dynamics, 2010, 15 : 274 - 284
  • [45] Chaotic dynamics of two Van der Pol-Duffing oscillators with Huygens coupling
    Belykh, V. N.
    Pankratova, E. V.
    REGULAR & CHAOTIC DYNAMICS, 2010, 15 (2-3): : 274 - 284
  • [46] Amplitude control of limit cycle in van der Pol system
    Tang, JS
    Chen, ZL
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (02): : 487 - 495
  • [47] On the dynamics of a Van der Pol-Duffing snap system
    Wiggers, Vinicius
    Rech, Paulo C.
    EUROPEAN PHYSICAL JOURNAL B, 2022, 95 (02):
  • [48] Analytical and numerical studies of the Bonhoeffer Van der Pol system
    Barnes, B
    Grimshaw, R
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1997, 38 : 427 - 453
  • [49] Optimal feedback control of the forced van der Pol system
    Chagas, T. P.
    Toledo, B. A.
    Rempel, E. L.
    Chian, A. C. -L.
    Valdivia, J. A.
    CHAOS SOLITONS & FRACTALS, 2012, 45 (9-10) : 1147 - 1156
  • [50] Influence of noise on mode change in a Van der Pol system
    Sergeev, O.S.
    Izvestiya Vysshikh Uchebnykh Zavedenij. Radiofizika, 2002, 45 (01): : 67 - 71