Chaos control of chaotic limit cycles of real and complex van der Pol oscillators

被引:38
|
作者
Mahmoud, GM
Farghaly, AAM
机构
[1] United Arab Emirates Univ, Dept Math & Comp Sci, Fac Sci, Al Ain, U Arab Emirates
[2] Univ Assiut, Fac Sci, Dept Math, Assiut 71516, Egypt
关键词
D O I
10.1016/j.chaos.2003.12.039
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Chaos control and nonlinear dynamics of both real and complex nonlinear oscillators constitutes some of the most fascinating developments in applied sciences. The chaos control of chaotic unstable limit cycles of real and complex (or coupled) nonlinear van der Pol oscillators is investigated in this paper. These oscillators appear in many important applications in engineering, for example, vacuum tube circuits. The presence of chaotic limit cycles is verified by calculating largest Lyapunov exponent and the power spectrum. The problem of chaos control of these limit cycles is studied using a feedback control method, which is based on the construction of a special form of a time-continuous perturbation. Our investigation of both real and complex (or coupled) van der Pol oscillators enriches the nonlinear dynamical systems. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:915 / 924
页数:10
相关论文
共 50 条
  • [1] An active control for chaos synchronization of real and complex Van der Pol oscillators
    Farghaly, Ahmed A. M.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2007, 18 (05): : 795 - 804
  • [2] Quantum limit cycles and the Rayleigh and van der Pol oscillators
    Ben Arosh, Lior
    Cross, M. C.
    Lifshitz, Ron
    PHYSICAL REVIEW RESEARCH, 2021, 3 (01):
  • [3] EXPERIMENTAL STUDY ON THE COEXISTENCE OF MULTIPLE LIMIT CYCLES FOR COUPLED VAN DER POL OSCILLATORS
    Egami, Chikahiro
    Yoshida, Takuma
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2017, 18 (07) : 1279 - 1296
  • [4] Control Design for the Compensation of Limit Cycles in Van Der Pol Oscillator
    Batool, Aisha
    Hanif, Athar
    Hamayun, M. T.
    Ali, S. M. Nawazish
    2017 13TH INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES (ICET 2017), 2017,
  • [5] Generating chaotic limit cycles for a complex Duffing-Van der Pol system using a random phase
    Yong, X
    Wei, X
    Mahmoud, GM
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2005, 16 (09): : 1437 - 1447
  • [6] Impulsive control and synchronization of chaotic systems consisting of Van der Pol oscillators coupled to linear oscillators
    Zhou, Jin
    Cheng, Xuhua
    Xiang, Lan
    Zhang, Yecui
    CHAOS SOLITONS & FRACTALS, 2007, 33 (02) : 607 - 616
  • [7] Adaptive control and synchronization of chaotic systems consisting of Van der Pol oscillators coupled to linear oscillators
    Fotsin, H
    Bowong, S
    CHAOS SOLITONS & FRACTALS, 2006, 27 (03) : 822 - 835
  • [8] Existence of limit cycles for coupled van der Pol equations
    Hirano, N
    Rybicki, S
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 195 (01) : 194 - 209
  • [9] Determination of limit cycles for a modified van der Pol oscillator
    D'Acunto, M
    MECHANICS RESEARCH COMMUNICATIONS, 2006, 33 (01) : 93 - 98
  • [10] Approximating limit cycles of a Van Der Pol equation with delay
    Gilsinn, DE
    PROCEEDINGS OF DYNAMIC SYSTEMS AND APPLICATIONS, VOL 4, 2004, : 270 - 276