Chaos control of chaotic limit cycles of real and complex van der Pol oscillators

被引:38
|
作者
Mahmoud, GM
Farghaly, AAM
机构
[1] United Arab Emirates Univ, Dept Math & Comp Sci, Fac Sci, Al Ain, U Arab Emirates
[2] Univ Assiut, Fac Sci, Dept Math, Assiut 71516, Egypt
关键词
D O I
10.1016/j.chaos.2003.12.039
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Chaos control and nonlinear dynamics of both real and complex nonlinear oscillators constitutes some of the most fascinating developments in applied sciences. The chaos control of chaotic unstable limit cycles of real and complex (or coupled) nonlinear van der Pol oscillators is investigated in this paper. These oscillators appear in many important applications in engineering, for example, vacuum tube circuits. The presence of chaotic limit cycles is verified by calculating largest Lyapunov exponent and the power spectrum. The problem of chaos control of these limit cycles is studied using a feedback control method, which is based on the construction of a special form of a time-continuous perturbation. Our investigation of both real and complex (or coupled) van der Pol oscillators enriches the nonlinear dynamical systems. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:915 / 924
页数:10
相关论文
共 50 条
  • [31] Variational principle for limit cycles of the Rayleigh-van der Pol equation
    Benguria, RD
    Depassier, MC
    PHYSICAL REVIEW E, 1999, 59 (05): : 4889 - 4893
  • [32] On stability of synchronized van der Pol oscillators
    Filanovsky, I. M.
    Verhoeven, C. J. M.
    2006 13TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS, VOLS 1-3, 2006, : 1252 - +
  • [33] Identification of the Parameters of Van der Pol Oscillators
    I. S. Baranyukova
    V. F. Shcherbak
    International Applied Mechanics, 2022, 58 : 481 - 487
  • [34] An investigation of coupled, van der Pol oscillators
    Low, LA
    Reinhall, PG
    Storti, DW
    JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2003, 125 (02): : 162 - 169
  • [35] Dynamics of Coupled Van der Pol Oscillators
    Kulikov D.A.
    Journal of Mathematical Sciences, 2022, 262 (6) : 817 - 824
  • [36] IDENTIFICATION OF THE PARAMETERS OF VAN DER POL OSCILLATORS
    Baranyukova, I. S.
    Shcherbak, V. F.
    INTERNATIONAL APPLIED MECHANICS, 2022, 58 (04) : 481 - 487
  • [37] Chaos control and synchronization of a Φ6-Van der Pol oscillator
    Kakmeni, FMM
    Bowong, S
    Tchawoua, C
    Kaptouom, E
    PHYSICS LETTERS A, 2004, 322 (5-6) : 305 - 323
  • [38] Analysis of Synchronization Phenomena in Complex Networks Consisting of van der Pol Oscillators
    Isozaki, Tsuyoshi
    Nara, Takumi
    Uwate, Yoko
    Nishio, Yoshifumi
    2020 17TH INTERNATIONAL SOC DESIGN CONFERENCE (ISOCC 2020), 2020, : 187 - 188
  • [39] CHAOS IN THE VAN-DER-POL OSCILLATOR
    BREMER, H
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1991, 71 (04): : T41 - T43
  • [40] Chaos synchronization between single and double wells Duffing-Van der Pol oscillators using active control
    Njah, A. N.
    Vincent, U. E.
    CHAOS SOLITONS & FRACTALS, 2008, 37 (05) : 1356 - 1361