Chaos control of chaotic limit cycles of real and complex van der Pol oscillators

被引:38
|
作者
Mahmoud, GM
Farghaly, AAM
机构
[1] United Arab Emirates Univ, Dept Math & Comp Sci, Fac Sci, Al Ain, U Arab Emirates
[2] Univ Assiut, Fac Sci, Dept Math, Assiut 71516, Egypt
关键词
D O I
10.1016/j.chaos.2003.12.039
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Chaos control and nonlinear dynamics of both real and complex nonlinear oscillators constitutes some of the most fascinating developments in applied sciences. The chaos control of chaotic unstable limit cycles of real and complex (or coupled) nonlinear van der Pol oscillators is investigated in this paper. These oscillators appear in many important applications in engineering, for example, vacuum tube circuits. The presence of chaotic limit cycles is verified by calculating largest Lyapunov exponent and the power spectrum. The problem of chaos control of these limit cycles is studied using a feedback control method, which is based on the construction of a special form of a time-continuous perturbation. Our investigation of both real and complex (or coupled) van der Pol oscillators enriches the nonlinear dynamical systems. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:915 / 924
页数:10
相关论文
共 50 条
  • [21] Synchronization of Van der Pol Oscillators Based on Dynamical Complex Network
    LI, Xinbin
    WANG, Lamei
    LIU, Xian
    PROCEEDINGS OF THE 29TH CHINESE CONTROL CONFERENCE, 2010, : 781 - 785
  • [22] Dynamics of distributed-order hyperchaotic complex van der Pol oscillators and their synchronization and control
    Gamal M. Mahmoud
    Ahmed A. Farghaly
    Tarek M. Abed-Elhameed
    Shaban A. Aly
    Ayman A. Arafa
    The European Physical Journal Plus, 135
  • [23] Dynamics of distributed-order hyperchaotic complex van der Pol oscillators and their synchronization and control
    Mahmoud, Gamal M.
    Farghaly, Ahmed A.
    Abed-Elhameed, Tarek M.
    Aly, Shaban A.
    Arafa, Ayman A.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (01):
  • [24] Amplitude control of limit cycle in van der Pol system
    Tang, JS
    Chen, ZL
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (02): : 487 - 495
  • [25] Rhythm synchronization and chaotic modulation of coupled Van der Pol oscillators in a model for the heartbeat
    dos Santos, AM
    Lopes, SR
    Viana, RL
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 338 (3-4) : 335 - 355
  • [26] Regular and chaotic vibrations of van der Pol and Rayleigh oscillators driven by parametric excitation
    Warminski, Jerzy
    IUTAM SYMPOSIUM ON 50 YEARS OF CHAOS: APPLIED AND THEORETICAL, 2012, 5 : 78 - 87
  • [27] Chaotic dynamics of two Van der Pol-Duffing oscillators with Huygens coupling
    V. N. Belykh
    E. V. Pankratova
    Regular and Chaotic Dynamics, 2010, 15 : 274 - 284
  • [28] Chaotic dynamics of two Van der Pol-Duffing oscillators with Huygens coupling
    Belykh, V. N.
    Pankratova, E. V.
    REGULAR & CHAOTIC DYNAMICS, 2010, 15 (2-3): : 274 - 284
  • [29] Analytical Solutions for Limit Cycles of the Forced Van Der Pol Duffing Oscillator
    Shukla, Anant Kant
    Ramamohan, T. R.
    Srinivas, S.
    11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 2187 - 2192
  • [30] LIMIT CYCLES OF CUBIC VAN DER POL EQUATION WITH ONE FINITE CRITICALPOINT
    郭林
    陈国维
    Annals of Differential Equations, 1997, (02) : 125 - 139