Intermittent chaotic spiking in the van der Pol-FitzHugh-Nagumo system with inertia

被引:6
|
作者
Ciszak, Marzena [1 ]
Balle, Salvador [2 ]
Piro, Oreste [2 ,3 ]
Marino, Francesco [1 ,4 ]
机构
[1] Ist Nazl Ottica, CNR, Via Sansone 1, I-50019 Sesto Fiorentino, Italy
[2] Inst Mediterrani Estudis Avancats, Dept Ecol & Marine Resources, IMEDEA, CSIC,UIB, Esporles, Spain
[3] Univ Illes Balears, Dept Fis, Km 7-5, E-07122 Palma De Mallorca, Spain
[4] Sez Firenze, INFN, Via Sansone 1, I-50019 Sesto Fiorentino, Italy
关键词
Mixed-mode oscillations; MIXED-MODE OSCILLATIONS; BIFURCATIONS; TURBULENCE; STATES;
D O I
10.1016/j.chaos.2022.113053
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The van der Pol-FitzHugh-Nagumo neuron model with inertia was shown to exhibit a chaotic mixed-mode dynamics composed of large-amplitude spikes separated by an irregular number of small-amplitude chaotic oscillations. In contrast to the standard 2D van der Pol-FitzHugh-Nagumo model driven by noise, the inter-spike intervals distribution displays a complex arrangement of sharp peaks related to the unstable periodic orbits of the chaotic attractor. For many ranges of parameters controlling the excitability of the system, we observe that chaotic mixed-mode states consist of lapses of nearly regular spiking interleaved by others of highly irregular one. We explore here the emergence of these structures and show their correspondence to the intermittent transitions to chaos. In fact, the average residence times in the nearly-periodic firing state, obey the same scaling law - as a function of the control parameter - than the one at the onset of type I intermittency for dynamical systems in the vicinity of a saddle node bifurcation. We hypothesize that this scenario is also present in a variety of slow-fast neuron models characterized by the coexistence of a two-dimensional fast manifold and a one-dimensional slow one.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Chaotic dynamics of a van der Pol oscillator provided with switched feedback
    Kal'yanov, E.V.
    Radiotekhnika i Elektronika, 2004, 49 (10): : 1228 - 1234
  • [22] Transient motion and chaotic dynamics in a pair of van der Pol oscillators
    Aman Kumar Singh
    R. D. S. Yadava
    The European Physical Journal Plus, 134
  • [23] Synchronization in small assemblies of van der Pol Duffing chaotic oscillators
    Guemez, J
    Matias, MA
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1996, 6 (09): : 1761 - 1766
  • [24] BIFURCATION AND CHAOTIC BEHAVIOR OF CREDIT RISK CONTAGION BASED ON FITZHUGH-NAGUMO SYSTEM
    Chen, Tingqiang
    He, Jianmin
    Wang, Jining
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (07):
  • [25] STOCHASTIC DYNAMICS OF THE FITZHUGH-NAGUMO NEURON MODEL THROUGH A MODIFIED VAN DER POL EQUATION WITH FRACTIONAL-ORDER TERM AND GAUSSIAN WHITE NOISE EXCITATION
    Guimfack, Boris Anicet
    Tabi, Conrad Bertrand
    Mohamadou, Alidou
    Kofane, Timoleon Crepin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (07): : 2229 - 2243
  • [26] Design of a nonlinear observer for a chaotic system consisting of Van der pol oscillator coupled to a linear oscillator
    Fotsin, HB
    Woafo, P
    PHYSICA SCRIPTA, 2005, 71 (03) : 241 - 244
  • [27] On the dynamics of a Van der Pol–Duffing snap system
    Vinícius Wiggers
    Paulo C. Rech
    The European Physical Journal B, 2022, 95
  • [28] Investigation of the bifurcation of stochastic van der Pol system
    Li Gao-Jie
    Wei, Xu
    Wang Liang
    Feng Jin-Qian
    ACTA PHYSICA SINICA, 2008, 57 (04) : 2107 - 2114
  • [29] Resonance effects in the Bonhoeffer van der Pol system
    Rabinovitch, A
    Thieberger, R
    Friedman, M
    Goshen, S
    CHAOS SOLITONS & FRACTALS, 1996, 7 (10) : 1713 - 1719
  • [30] Synchronization in small assemblies of van der Pol-Duffing chaotic oscillators
    Güémez, J
    Matías, MA
    PROCEEDINGS OF THE WORKSHOP ON DISCRETELY-COUPLED DYNAMICAL SYSTEMS, 1997, 9 : 157 - 162