Region Selective Fusion Network for Robust RGB-T Tracking

被引:7
|
作者
Yu, Zhencheng [1 ,2 ,3 ]
Fan, Huijie [1 ,2 ]
Wang, Qiang [4 ]
Li, Ziwan [1 ,5 ]
Tang, Yandong [1 ,2 ]
机构
[1] Chinese Acad Sci, Shenyang Inst Automat, State Key Lab Robot, Shenyang 110016, Peoples R China
[2] Chinese Acad Sci, Inst Robot & Intelligent Mfg, Shenyang 110169, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Shenyang Univ, Key Lab Mfg Ind Integrated, Shenyang 110096, Peoples R China
[5] Shenyang Univ Chem Technol, Sch Informat Engn, Shenyang 110142, Peoples R China
基金
中国国家自然科学基金;
关键词
Target tracking; Feature extraction; Reliability; Mobile computing; Ad hoc networks; Head; Visualization; Deep visual tracking; neural networks; visible-infrared fusion; vision transformer;
D O I
10.1109/LSP.2023.3316021
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
RGB-T tracking utilizes thermal infrared images as a complement to visible light images in order to perform more robust visual tracking in various scenarios. However, the highly aligned RGB-T image pairs introduces redundant information, the modal quality fluctuation during tracking also brings unreliable information. Existing RGB-T trackers usually use channel-wise multi-modal feature fusion in which the low-quality features degrades the fused features and causes trackers to drift. In this work, we propose a region selective fusion network that first evaluates each image region by cross-modal and cross-region modeling, then removes low-quality redundant region features to alleviate the negative effects caused by unreliable information in multi-modal fusion. Besides, the region removal scheme brings a efficiency boost as redundant features are removed progressively, this enables the tracker to run at a high tracking speed. Extensive experiments show that the proposed tracker achieves competitive performance with a real-time tracking speed on multiple RGB-T tracking benchmarks including LasHeR, RGBT234 and GTOT.
引用
收藏
页码:1357 / 1361
页数:5
相关论文
共 50 条
  • [31] Cross-Collaboration Weighted Fusion Network for RGB-T Salient Detection
    Wang, Yumei
    Dongye, Changlei
    Zhao, Wenxiu
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT IV, ICIC 2024, 2024, 14865 : 301 - 312
  • [32] DHFNet: Decoupled Hierarchical Fusion Network for RGB-T dense prediction tasks
    Chen, Haojie
    Wang, Zhuo
    Qin, Hongde
    Mu, Xiaokai
    NEUROCOMPUTING, 2024, 583
  • [33] DaCFN: divide-and-conquer fusion network for RGB-T object detection
    Bofan Wang
    Haitao Zhao
    Yi Zhuang
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 2407 - 2420
  • [34] MFCNet: Multimodal Feature Fusion Network for RGB-T Vehicle Density Estimation
    Qin, Ling-Xiao
    Sun, Hong-Mei
    Duan, Xiao-Meng
    Che, Cheng-Yue
    Jia, Rui-Sheng
    IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (04): : 4207 - 4219
  • [35] Light-sensitive and adaptive fusion network for RGB-T crowd counting
    Huang, Liangjun
    Kang, Wencan
    Chen, Guangkai
    Zhang, Qing
    Zhang, Jianwei
    VISUAL COMPUTER, 2024, 40 (10): : 7279 - 7292
  • [36] Robust RGB-T Tracking via Graph Attention-Based Bilinear Pooling
    Kang, Bin
    Liang, Dong
    Mei, Junxi
    Tan, Xiaoyang
    Zhou, Quan
    Zhang, Dengyin
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (12) : 9900 - 9911
  • [37] Top-Down Cross-Modal Guidance for Robust RGB-T Tracking
    Chen, Liang
    Zhong, Bineng
    Liang, Qihua
    Zheng, Yaozong
    Mo, Zhiyi
    Song, Shuxiang
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (12) : 12388 - 12398
  • [38] Correlation Filters Based on Strong Spatio-Temporal for Robust RGB-T Tracking
    Luo, Futing
    Zhou, Mingliang
    Fang, Bing
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2022, 31 (03)
  • [39] Unsupervised RGB-T object tracking with attentional multi-modal feature fusion
    Li, Shenglan
    Yao, Rui
    Zhou, Yong
    Zhu, Hancheng
    Liu, Bing
    Zhao, Jiaqi
    Shao, Zhiwen
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (15) : 23595 - 23613
  • [40] TandemFuse: An Intra- and Inter-Modal Fusion Strategy for RGB-T Tracking
    Zhou, Xinyang
    Li, Hui
    2024 2ND ASIA CONFERENCE ON COMPUTER VISION, IMAGE PROCESSING AND PATTERN RECOGNITION, CVIPPR 2024, 2024,