Cross-Collaboration Weighted Fusion Network for RGB-T Salient Detection

被引:0
|
作者
Wang, Yumei [1 ]
Dongye, Changlei [1 ]
Zhao, Wenxiu [1 ]
机构
[1] Shandong Univ Sci & Technol, Huangdao, Peoples R China
关键词
Salient object detection; Illumination weights; Image quality; RGB-T;
D O I
10.1007/978-981-97-5591-2_26
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
RGB-T salient object detection (SOD) aims to accurately and effectively detect and segment salient objects by using the complementary information from RGB and thermal modalities. However, existing RGB-T SOD methods often overlook the fact that RGB and thermal images may not consistently aid in precise detection. To address this issue, we propose a novel approach called CWFNet for RGB-T SOD enhancing the model's adaptiveness in variable illumination scenarios. First of all, we introduce a global illumination learning module (GILM) to evaluate the illumination conditions. The generated illuminance weights not only adjust modality interaction but also serve to weaken the influence of undesirable modalities. Subsequently, in the encoding stage, guided by the illuminance weights, we design an RGB-guided fusion module (RFM) to complete early fusion of cross-modal features. In the decoding stage, we propose a thermal-guided localization supplement module (TLSM) to strengthen the perception of salient object locations. Extensive experiments are conducted on three benchmark RGBT datasets and compared to state-of-the-art methods. Our experimental results validate the superiority of our model in the RGB-T SOD task.
引用
收藏
页码:301 / 312
页数:12
相关论文
共 50 条
  • [1] Weighted Guided Optional Fusion Network for RGB-T Salient Object Detection
    Wang, Jie
    Li, Guoqiang
    Shi, Jie
    Xi, Jinwen
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2024, 20 (05)
  • [2] CGFNet: Cross-Guided Fusion Network for RGB-T Salient Object Detection
    Wang, Jie
    Song, Kechen
    Bao, Yanqi
    Huang, Liming
    Yan, Yunhui
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (05) : 2949 - 2961
  • [3] Modal complementary fusion network for RGB-T salient object detection
    Ma, Shuai
    Song, Kechen
    Dong, Hongwen
    Tian, Hongkun
    Yan, Yunhui
    APPLIED INTELLIGENCE, 2023, 53 (08) : 9038 - 9055
  • [4] Bidirectional Alternating Fusion Network for RGB-T Salient Object Detection
    Tu, Zhengzheng
    Lin, Danying
    Jiang, Bo
    Gu, Le
    Wang, Kunpeng
    Zhai, Sulan
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT VIII, 2025, 15038 : 34 - 48
  • [5] Modal complementary fusion network for RGB-T salient object detection
    Shuai Ma
    Kechen Song
    Hongwen Dong
    Hongkun Tian
    Yunhui Yan
    Applied Intelligence, 2023, 53 : 9038 - 9055
  • [6] Cross-Modality Double Bidirectional Interaction and Fusion Network for RGB-T Salient Object Detection
    Xie, Zhengxuan
    Shao, Feng
    Chen, Gang
    Chen, Hangwei
    Jiang, Qiuping
    Meng, Xiangchao
    Ho, Yo-Sung
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (08) : 4149 - 4163
  • [7] FEATURE ENHANCEMENT AND FUSION FOR RGB-T SALIENT OBJECT DETECTION
    Sun, Fengming
    Zhang, Kang
    Yuan, Xia
    Zhao, Chunxia
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 1300 - 1304
  • [8] Revisiting Feature Fusion for RGB-T Salient Object Detection
    Zhang, Qiang
    Xiao, Tonglin
    Huang, Nianchang
    Zhang, Dingwen
    Han, Jungong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (05) : 1804 - 1818
  • [9] ECFFNet: Effective and Consistent Feature Fusion Network for RGB-T Salient Object Detection
    Zhou, Wujie
    Guo, Qinling
    Lei, Jingsheng
    Yu, Lu
    Hwang, Jenq-Neng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (03) : 1224 - 1235
  • [10] Edge-guided feature fusion network for RGB-T salient object detection
    Chen, Yuanlin
    Sun, Zengbao
    Yan, Cheng
    Zhao, Ming
    FRONTIERS IN NEUROROBOTICS, 2024, 18