Revisiting Feature Fusion for RGB-T Salient Object Detection

被引:106
|
作者
Zhang, Qiang [1 ,2 ]
Xiao, Tonglin [2 ]
Huang, Nianchang [2 ]
Zhang, Dingwen [2 ]
Han, Jungong [3 ]
机构
[1] Xidian Univ, Minist Educ, Key Lab Elect Equipment Struct Design, Xian 710071, Peoples R China
[2] Xidian Univ, Sch Mechanoelect Engn, Ctr Complex Syst, Xian 710071, Peoples R China
[3] Aberystwyth Univ, Comp Sci Dept, Aberystwyth SY23 3FL, Dyfed, Wales
基金
中国国家自然科学基金;
关键词
Object detection; Feature extraction; Saliency detection; Computational modeling; Semantics; Lighting; Task analysis; Salient object detection; RGB-T; multi-scale; multi-modality; multi-level; feature fusion; SEGMENTATION; NETWORK; MODEL;
D O I
10.1109/TCSVT.2020.3014663
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
While many RGB-based saliency detection algorithms have recently shown the capability of segmenting salient objects from an image, they still suffer from unsatisfactory performance when dealing with complex scenarios, insufficient illumination or occluded appearances. To overcome this problem, this article studies RGB-T saliency detection, where we take advantage of thermal modality's robustness against illumination and occlusion. To achieve this goal, we revisit feature fusion for mining intrinsic RGB-T saliency patterns and propose a novel deep feature fusion network, which consists of the multi-scale, multi-modality, and multi-level feature fusion modules. Specifically, the multi-scale feature fusion module captures rich contexture features from each modality feature, while the multi-modality and multi-level feature fusion modules integrate complementary features from different modality features and different level of features, respectively. To demonstrate the effectiveness of the proposed approach, we conduct comprehensive experiments on the RGB-T saliency detection benchmark. The experimental results demonstrate that our approach outperforms other state-of-the-art methods and the conventional feature fusion modules by a large margin.
引用
收藏
页码:1804 / 1818
页数:15
相关论文
共 50 条
  • [1] FEATURE ENHANCEMENT AND FUSION FOR RGB-T SALIENT OBJECT DETECTION
    Sun, Fengming
    Zhang, Kang
    Yuan, Xia
    Zhao, Chunxia
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 1300 - 1304
  • [2] Feature aggregation with transformer for RGB-T salient object detection
    Zhang, Ping
    Xu, Mengnan
    Zhang, Ziyan
    Gao, Pan
    Zhang, Jing
    NEUROCOMPUTING, 2023, 546
  • [3] ECFFNet: Effective and Consistent Feature Fusion Network for RGB-T Salient Object Detection
    Zhou, Wujie
    Guo, Qinling
    Lei, Jingsheng
    Yu, Lu
    Hwang, Jenq-Neng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (03) : 1224 - 1235
  • [4] Edge-guided feature fusion network for RGB-T salient object detection
    Chen, Yuanlin
    Sun, Zengbao
    Yan, Cheng
    Zhao, Ming
    FRONTIERS IN NEUROROBOTICS, 2024, 18
  • [5] RGB-T salient object detection via CNN feature and result saliency map fusion
    Chang Xu
    Qingwu Li
    Mingyu Zhou
    Qingkai Zhou
    Yaqin Zhou
    Yunpeng Ma
    Applied Intelligence, 2022, 52 : 11343 - 11362
  • [6] RGB-T salient object detection via CNN feature and result saliency map fusion
    Xu, Chang
    Li, Qingwu
    Zhou, Mingyu
    Zhou, Qingkai
    Zhou, Yaqin
    Ma, Yunpeng
    APPLIED INTELLIGENCE, 2022, 52 (10) : 11343 - 11362
  • [7] Modal complementary fusion network for RGB-T salient object detection
    Ma, Shuai
    Song, Kechen
    Dong, Hongwen
    Tian, Hongkun
    Yan, Yunhui
    APPLIED INTELLIGENCE, 2023, 53 (08) : 9038 - 9055
  • [8] Bidirectional Alternating Fusion Network for RGB-T Salient Object Detection
    Tu, Zhengzheng
    Lin, Danying
    Jiang, Bo
    Gu, Le
    Wang, Kunpeng
    Zhai, Sulan
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT VIII, 2025, 15038 : 34 - 48
  • [9] Modal complementary fusion network for RGB-T salient object detection
    Shuai Ma
    Kechen Song
    Hongwen Dong
    Hongkun Tian
    Yunhui Yan
    Applied Intelligence, 2023, 53 : 9038 - 9055
  • [10] Wavelet-Driven Multi-Band Feature Fusion for RGB-T Salient Object Detection
    Zhao, Jianxun
    Wen, Xin
    He, Yu
    Yang, Xiaowei
    Song, Kechen
    Sensors, 2024, 24 (24)