While many RGB-based saliency detection algorithms have recently shown the capability of segmenting salient objects from an image, they still suffer from unsatisfactory performance when dealing with complex scenarios, insufficient illumination or occluded appearances. To overcome this problem, this article studies RGB-T saliency detection, where we take advantage of thermal modality's robustness against illumination and occlusion. To achieve this goal, we revisit feature fusion for mining intrinsic RGB-T saliency patterns and propose a novel deep feature fusion network, which consists of the multi-scale, multi-modality, and multi-level feature fusion modules. Specifically, the multi-scale feature fusion module captures rich contexture features from each modality feature, while the multi-modality and multi-level feature fusion modules integrate complementary features from different modality features and different level of features, respectively. To demonstrate the effectiveness of the proposed approach, we conduct comprehensive experiments on the RGB-T saliency detection benchmark. The experimental results demonstrate that our approach outperforms other state-of-the-art methods and the conventional feature fusion modules by a large margin.
机构:
Peking Univ, Sch Elect & Comp Engn, Shenzhen Grad Sch, Shenzhen 518055, Peoples R China
Peng Cheng Lab, Shenzhen 518066, Peoples R ChinaPeking Univ, Sch Elect & Comp Engn, Shenzhen Grad Sch, Shenzhen 518055, Peoples R China
Gao, Wei
Liao, Guibiao
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, Sch Elect & Comp Engn, Shenzhen Grad Sch, Shenzhen 518055, Peoples R China
Peng Cheng Lab, Shenzhen 518066, Peoples R ChinaPeking Univ, Sch Elect & Comp Engn, Shenzhen Grad Sch, Shenzhen 518055, Peoples R China
Liao, Guibiao
Ma, Siwei
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, Inst Digital Media, Beijing 100871, Peoples R ChinaPeking Univ, Sch Elect & Comp Engn, Shenzhen Grad Sch, Shenzhen 518055, Peoples R China
Ma, Siwei
Li, Ge
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, Sch Elect & Comp Engn, Shenzhen Grad Sch, Shenzhen 518055, Peoples R China
Peng Cheng Lab, Shenzhen 518066, Peoples R ChinaPeking Univ, Sch Elect & Comp Engn, Shenzhen Grad Sch, Shenzhen 518055, Peoples R China
Li, Ge
Liang, Yongsheng
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol, Sch Elect & Informat Engn, Shenzhen 518055, Peoples R ChinaPeking Univ, Sch Elect & Comp Engn, Shenzhen Grad Sch, Shenzhen 518055, Peoples R China
Liang, Yongsheng
Lin, Weisi
论文数: 0引用数: 0
h-index: 0
机构:
Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore 639798, SingaporePeking Univ, Sch Elect & Comp Engn, Shenzhen Grad Sch, Shenzhen 518055, Peoples R China
机构:
Beijing Jiaotong Univ, Inst Informat Sci, Beijing 100044, Peoples R China
Network Technol, Beijing Key Lab Adv Informat Sci, Beijing 100044, Peoples R China
City Univ Hong Kong, Dept Comp Sci, Hong Kong, Peoples R ChinaBeijing Jiaotong Univ, Inst Informat Sci, Beijing 100044, Peoples R China
Cong, Runmin
Zhang, Kepu
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Jiaotong Univ, Inst Informat Sci, Beijing 100044, Peoples R China
Network Technol, Beijing Key Lab Adv Informat Sci, Beijing 100044, Peoples R ChinaBeijing Jiaotong Univ, Inst Informat Sci, Beijing 100044, Peoples R China
Zhang, Kepu
Zhang, Chen
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Jiaotong Univ, Inst Informat Sci, Beijing 100044, Peoples R China
Network Technol, Beijing Key Lab Adv Informat Sci, Beijing 100044, Peoples R ChinaBeijing Jiaotong Univ, Inst Informat Sci, Beijing 100044, Peoples R China
Zhang, Chen
Zheng, Feng
论文数: 0引用数: 0
h-index: 0
机构:
Southern Univ Sci & Technol, Dept Comp Sci & Technol, Shenzhen 518055, Peoples R China
Res Inst Trustworthy Autonomous Syst, Shenzhen 518055, Peoples R ChinaBeijing Jiaotong Univ, Inst Informat Sci, Beijing 100044, Peoples R China
Zheng, Feng
Zhao, Yao
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Jiaotong Univ, Inst Informat Sci, Beijing 100044, Peoples R China
Network Technol, Beijing Key Lab Adv Informat Sci, Beijing 100044, Peoples R ChinaBeijing Jiaotong Univ, Inst Informat Sci, Beijing 100044, Peoples R China
Zhao, Yao
Huang, Qingming
论文数: 0引用数: 0
h-index: 0
机构:
Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing 101408, Peoples R China
Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
Peng Cheng Lab, Shenzhen 518055, Peoples R ChinaBeijing Jiaotong Univ, Inst Informat Sci, Beijing 100044, Peoples R China
Huang, Qingming
Kwong, Sam
论文数: 0引用数: 0
h-index: 0
机构:
City Univ Hong Kong, Dept Comp Sci, Hong Kong, Peoples R China
City Univ Hong Kong, Shenzhen Res Inst, Shenzhen 51800, Peoples R ChinaBeijing Jiaotong Univ, Inst Informat Sci, Beijing 100044, Peoples R China