Does Thermal Really Always Matter for RGB-T Salient Object Detection?

被引:46
|
作者
Cong, Runmin [1 ,2 ,3 ]
Zhang, Kepu [1 ,2 ]
Zhang, Chen [1 ,2 ]
Zheng, Feng [4 ,5 ]
Zhao, Yao [1 ,2 ]
Huang, Qingming [6 ,7 ,8 ]
Kwong, Sam [3 ,9 ]
机构
[1] Beijing Jiaotong Univ, Inst Informat Sci, Beijing 100044, Peoples R China
[2] Network Technol, Beijing Key Lab Adv Informat Sci, Beijing 100044, Peoples R China
[3] City Univ Hong Kong, Dept Comp Sci, Hong Kong, Peoples R China
[4] Southern Univ Sci & Technol, Dept Comp Sci & Technol, Shenzhen 518055, Peoples R China
[5] Res Inst Trustworthy Autonomous Syst, Shenzhen 518055, Peoples R China
[6] Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing 101408, Peoples R China
[7] Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
[8] Peng Cheng Lab, Shenzhen 518055, Peoples R China
[9] City Univ Hong Kong, Shenzhen Res Inst, Shenzhen 51800, Peoples R China
基金
北京市自然科学基金; 国家重点研发计划; 中国国家自然科学基金;
关键词
Task analysis; Decoding; Semantics; Object detection; Location awareness; Lighting; Feature extraction; RGB-T images; salient object detection; global illumination estimation; semantic constraint provider; localization and complementation; FUSION NETWORK;
D O I
10.1109/TMM.2022.3216476
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In recent years, RGB-T salient object detection (SOD) has attracted continuous attention, which makes it possible to identify salient objects in environments such as low light by introducing thermal image. However, most of the existing RGB-T SOD models focus on how to perform cross-modality feature fusion, ignoring whether thermal image is really always matter in SOD task. Starting from the definition and nature of this task, this paper rethinks the connotation of thermal modality, and proposes a network named TNet to solve the RGB-T SOD task. In this paper, we introduce a global illumination estimation module to predict the global illuminance score of the image, so as to regulate the role played by the two modalities. In addition, considering the role of thermal modality, we set up different cross-modality interaction mechanisms in the encoding phase and the decoding phase. On the one hand, we introduce a semantic constraint provider to enrich the semantics of thermal images in the encoding phase, which makes thermal modality more suitable for the SOD task. On the other hand, we introduce a two-stage localization and complementation module in the decoding phase to transfer object localization cue and internal integrity cue in thermal features to the RGB modality. Extensive experiments on three datasets show that the proposed TNet achieves competitive performance compared with 20 state-of-the-art methods.
引用
收藏
页码:6971 / 6982
页数:12
相关论文
共 50 条
  • [1] Feature aggregation with transformer for RGB-T salient object detection
    Zhang, Ping
    Xu, Mengnan
    Zhang, Ziyan
    Gao, Pan
    Zhang, Jing
    NEUROCOMPUTING, 2023, 546
  • [2] FEATURE ENHANCEMENT AND FUSION FOR RGB-T SALIENT OBJECT DETECTION
    Sun, Fengming
    Zhang, Kang
    Yuan, Xia
    Zhao, Chunxia
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 1300 - 1304
  • [3] Revisiting Feature Fusion for RGB-T Salient Object Detection
    Zhang, Qiang
    Xiao, Tonglin
    Huang, Nianchang
    Zhang, Dingwen
    Han, Jungong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (05) : 1804 - 1818
  • [4] Enabling modality interactions for RGB-T salient object detection
    Zhang, Qiang
    Xi, Ruida
    Xiao, Tonglin
    Huang, Nianchang
    Luo, Yongjiang
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2022, 222
  • [5] Scribble-Supervised RGB-T Salient Object Detection
    Liu, Zhengyi
    Huang, Xiaoshen
    Zhang, Guanghui
    Fang, Xianyong
    Wang, Linbo
    Tang, Bin
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 2369 - 2374
  • [6] Saliency Prototype for RGB-D and RGB-T Salient Object Detection
    Zhang, Zihao
    Wang, Jie
    Han, Yahong
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 3696 - 3705
  • [7] Modal complementary fusion network for RGB-T salient object detection
    Ma, Shuai
    Song, Kechen
    Dong, Hongwen
    Tian, Hongkun
    Yan, Yunhui
    APPLIED INTELLIGENCE, 2023, 53 (08) : 9038 - 9055
  • [8] PSNet: Parallel symmetric network for RGB-T salient object detection
    Bi, Hongbo
    Wu, Ranwan
    Liu, Ziqi
    Zhang, Jiayuan
    Zhang, Cong
    Xiang, Tian-Zhu
    Wang, Xiufang
    NEUROCOMPUTING, 2022, 511 (410-425) : 410 - 425
  • [9] SIA: RGB-T salient object detection network with salient-illumination awareness
    Song, Kechen
    Wen, Hongwei
    Ji, Yingying
    Xue, Xiaotong
    Huang, Liming
    Yan, Yunhui
    Meng, Qinggang
    OPTICS AND LASERS IN ENGINEERING, 2024, 172
  • [10] Bidirectional Alternating Fusion Network for RGB-T Salient Object Detection
    Tu, Zhengzheng
    Lin, Danying
    Jiang, Bo
    Gu, Le
    Wang, Kunpeng
    Zhai, Sulan
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT VIII, 2025, 15038 : 34 - 48