Region Selective Fusion Network for Robust RGB-T Tracking

被引:7
|
作者
Yu, Zhencheng [1 ,2 ,3 ]
Fan, Huijie [1 ,2 ]
Wang, Qiang [4 ]
Li, Ziwan [1 ,5 ]
Tang, Yandong [1 ,2 ]
机构
[1] Chinese Acad Sci, Shenyang Inst Automat, State Key Lab Robot, Shenyang 110016, Peoples R China
[2] Chinese Acad Sci, Inst Robot & Intelligent Mfg, Shenyang 110169, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Shenyang Univ, Key Lab Mfg Ind Integrated, Shenyang 110096, Peoples R China
[5] Shenyang Univ Chem Technol, Sch Informat Engn, Shenyang 110142, Peoples R China
基金
中国国家自然科学基金;
关键词
Target tracking; Feature extraction; Reliability; Mobile computing; Ad hoc networks; Head; Visualization; Deep visual tracking; neural networks; visible-infrared fusion; vision transformer;
D O I
10.1109/LSP.2023.3316021
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
RGB-T tracking utilizes thermal infrared images as a complement to visible light images in order to perform more robust visual tracking in various scenarios. However, the highly aligned RGB-T image pairs introduces redundant information, the modal quality fluctuation during tracking also brings unreliable information. Existing RGB-T trackers usually use channel-wise multi-modal feature fusion in which the low-quality features degrades the fused features and causes trackers to drift. In this work, we propose a region selective fusion network that first evaluates each image region by cross-modal and cross-region modeling, then removes low-quality redundant region features to alleviate the negative effects caused by unreliable information in multi-modal fusion. Besides, the region removal scheme brings a efficiency boost as redundant features are removed progressively, this enables the tracker to run at a high tracking speed. Extensive experiments show that the proposed tracker achieves competitive performance with a real-time tracking speed on multiple RGB-T tracking benchmarks including LasHeR, RGBT234 and GTOT.
引用
收藏
页码:1357 / 1361
页数:5
相关论文
共 50 条
  • [41] Multi-modal adapter for RGB-T tracking
    Wang, He
    Xu, Tianyang
    Tang, Zhangyong
    Wu, Xiao-Jun
    Kittler, Josef
    INFORMATION FUSION, 2025, 118
  • [42] Attention interaction based RGB-T tracking method
    Wang W.
    Fu F.
    Lei H.
    Tang Z.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2024, 32 (03): : 435 - 444
  • [43] Attention and Pixel Matching in RGB-T Object Tracking
    Li, Da
    Zhang, Yao
    Chen, Min
    Chai, Haoxiang
    MATHEMATICS, 2023, 11 (07)
  • [44] CONDITIONAL RGB-T FUSION FOR EFFECTIVE CROWD COUNTING
    Pahwa, Esha
    Kapadia, Sanjeet
    Luthra, Achleshwar
    Sheeranali, Shreyas
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 376 - 380
  • [45] CGFNet: Cross-Guided Fusion Network for RGB-T Salient Object Detection
    Wang, Jie
    Song, Kechen
    Bao, Yanqi
    Huang, Liming
    Yan, Yunhui
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (05) : 2949 - 2961
  • [46] TAFNet: A Three-Stream Adaptive Fusion Network for RGB-T Crowd Counting
    Tang, Haihan
    Wang, Yi
    Chau, Lap-Pui
    2022 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS 22), 2022, : 3299 - 3303
  • [47] MFENet: Multitype fusion and enhancement network for detecting salient objects in RGB-T images
    Wu J.
    Zhou W.
    Qian X.
    Lei J.
    Yu L.
    Luo T.
    Digital Signal Processing: A Review Journal, 2023, 133
  • [48] Object Fusion Tracking for RGB-T Images via Channel Swapping and Modal Mutual Attention
    Luan, Tian
    Zhang, Hui
    Li, Jiafeng
    Zhang, Jing
    Zhuo, Li
    IEEE SENSORS JOURNAL, 2023, 23 (19) : 22930 - 22943
  • [49] Cross-Modal Ranking with Soft Consistency and Noisy Labels for Robust RGB-T Tracking
    Li, Chenglong
    Zhu, Chengli
    Huang, Yan
    Tang, Jin
    Wang, Liang
    COMPUTER VISION - ECCV 2018, PT XIII, 2018, 11217 : 831 - 847
  • [50] CrowdFusion: Refined Cross-Modal Fusion Network for RGB-T Crowd Counting
    Cai, Jialu
    Wang, Qing
    Jiang, Shengqin
    BIOMETRIC RECOGNITION, CCBR 2023, 2023, 14463 : 427 - 436