Enhanced honey badger optimization of performance analysis of evacuated tube heat pipe solar collector integrated with PCM storage unit

被引:1
|
作者
Ramesh, C. [1 ,5 ]
Vijayakumar, M. [2 ]
Kumaresan, G. [3 ]
Selvanayagam, Benjamin Franklin [4 ]
机构
[1] KIT Kalaignar Karunanidhi Inst Technol, Dept Mech Engn, Coimbatore, Tamil Nadu, India
[2] PSN Coll Engn & Technol, Dept Mech Engn, Tirunelveli, Tamil Nadu, India
[3] Bannari Amman Inst Technol, Dept Mech Engn, Sathyamangalam, Tamil Nadu, India
[4] Sri Ramakrishna Inst Technol, Dept Mech Engn, Coimbatore, Tamil Nadu, India
[5] KIT Kalaignar Karunanidhi Inst Technol, Dept Mech Engn, Coimbatore 641402, Tamil Nadu, India
关键词
Heat pipe; phase change material; aluminum fin; fin temperature; optimization; thermal energy storage; liquid fractions; PHASE-CHANGE MATERIAL; THERMAL PERFORMANCE; WATER-HEATER; SYSTEM; TANK;
D O I
10.1177/0958305X231189187
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A hybrid method for improving the efficiency of heat pipe evacuated-tube solar-collector (HPETC) is proposed for incorporating the phase-change materials (PCMs) in both off-demand and regular operation. The proposed hybrid approach is called an improved honey badger algorithm (HBA). The crossover and mutation operator improves the honey badger's (HB) foraging habit. The proposed approach aims to generate hot air at various rates of airflow under incident and nonincident solar-radiation situations. The analysis is done on the effects of different energy-storage systems and the position of the heat pipe (HP). In a normal heat-pipe evacuated-tube solar collector, the HP is put within the glass tube that is closer to the upper-surface, and it is held in place through an aluminum fin. However, in the proposed method, the HP is rearranged in the tube's middle. In order to identify the PCM with the highest average-fin temperature, the temperatures of the area-weighted average-fin are measured and compared throughout the glass tubes under typical conditions. For maximizing the thermal-energy carrying capability, the average liquid fraction volume of PCMs is measured for a 24-h flow period. The average liquid-fraction volume of PCMs is continuously observed in stagnation mode till the glass tube reaches the maximal value. The structured mesh patch conforming method is used to invalidate the HPETC system's constituent parts, improving numerical stability and convergence. The proposed method efficiency is 0.43. The proposed method shows high efficiency compared with other existing methods.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Thermal performance of a solar cooker based on an evacuated tube solar collector with a PCM storage unit
    Sharma, SD
    Iwata, T
    Kitano, H
    Sagara, K
    SOLAR ENERGY, 2005, 78 (03) : 416 - 426
  • [2] Thermal Performance of Evacuated Tube Heat Pipe Solar Collector
    Putra, Nandy
    Kristian, M. R.
    David, R.
    Haliansyah, K.
    Ariantara, Bambang
    PROCEEDINGS OF THE 3RD AUN/SEED-NET REGIONAL CONFERENCE ON ENERGY ENGINEERING AND THE 7TH INTERNATIONAL CONFERENCE ON THERMOFLUIDS (RCENE/THERMOFLUID 2015), 2016, 1737
  • [3] INTEGRATION OF THERMAL ENERGY STORAGE MATERIALS IN HEAT PIPE EVACUATED TUBE SOLAR COLLECTOR SYSTEMS FOR ENHANCED SOLAR THERMAL PERFORMANCE
    Hachim, Dhafer Manea
    Eidan, Adel A.
    Alshukri, Mohammed J.
    Al-Fahham, Mohamed
    Alsahlani, Assaad
    Al-Manea, Ahmed
    Al-Rbaihat, Raed
    Alahmer, Ali
    COMPUTATIONAL THERMAL SCIENCES, 2024, 16 (06): : 59 - 85
  • [4] Design of Evacuated Tube Solar Collector with Heat Pipe
    Kumar, S. Siva
    Kumar, K. Mohan
    Kumar, S. R. Sanjeev
    MATERIALS TODAY-PROCEEDINGS, 2017, 4 (14) : 12641 - 12646
  • [5] Performance of evacuated tube solar collector integrated solar desalination unit - a review
    Kumar, Rajeev
    Singh, Desh Bandhu
    Dewangan, Ashish
    Singh, Vivek Kumar
    Kumar, Navneet
    DESALINATION AND WATER TREATMENT, 2021, 230 : 92 - 115
  • [6] Experimental investigation of a desiccant dehumidifier based on evacuated tube solar collector with a PCM storage unit
    Mehla, Neeraj
    Yadav, Avadhesh
    DRYING TECHNOLOGY, 2017, 35 (04) : 417 - 432
  • [7] Experimental and Theoretical Analysis for the Performance of Evacuated Tube Collector Integrated with Helical Finned Heat Pipes using PCM Energy Storage
    Essa, Mohamed A.
    Rofaiel, Ibrahim Y.
    Ahmed, Mohamed A.
    ENERGY, 2020, 206
  • [8] Optical and thermal performance analysis of a compact solar collector with heat-pipe evacuated tube
    Yang, Moucun
    Zhi, Liming
    Diao, Kelong
    Zhu, Yuezhao
    Taylor, Robert A.
    SOLAR ENERGY, 2023, 258 : 118 - 129
  • [9] Improving solar still performance with heat pipe/pulsating heat pipe evacuated tube solar collectors and PCM: An experimental and environmental analysis
    Hemmatian, Amir
    Kargarsharifabad, Hadi
    Esfahlani, Ahad Abedini
    Rahbar, Nader
    Shoeibi, Shahin
    SOLAR ENERGY, 2024, 269
  • [10] WATER DESALINATION BY EVACUATED TUBE HEAT PIPE SOLAR COLLECTOR
    Alwaer, A.
    Gryzagoridis, J.
    PROCEEDINGS OF THE 2014 11TH INTERNATIONAL CONFERENCE ON THE INDUSTRIAL AND COMMERCIAL USE OF ENERGY (ICUE), 2014, : 364 - 368