Enhanced honey badger optimization of performance analysis of evacuated tube heat pipe solar collector integrated with PCM storage unit

被引:1
|
作者
Ramesh, C. [1 ,5 ]
Vijayakumar, M. [2 ]
Kumaresan, G. [3 ]
Selvanayagam, Benjamin Franklin [4 ]
机构
[1] KIT Kalaignar Karunanidhi Inst Technol, Dept Mech Engn, Coimbatore, Tamil Nadu, India
[2] PSN Coll Engn & Technol, Dept Mech Engn, Tirunelveli, Tamil Nadu, India
[3] Bannari Amman Inst Technol, Dept Mech Engn, Sathyamangalam, Tamil Nadu, India
[4] Sri Ramakrishna Inst Technol, Dept Mech Engn, Coimbatore, Tamil Nadu, India
[5] KIT Kalaignar Karunanidhi Inst Technol, Dept Mech Engn, Coimbatore 641402, Tamil Nadu, India
关键词
Heat pipe; phase change material; aluminum fin; fin temperature; optimization; thermal energy storage; liquid fractions; PHASE-CHANGE MATERIAL; THERMAL PERFORMANCE; WATER-HEATER; SYSTEM; TANK;
D O I
10.1177/0958305X231189187
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A hybrid method for improving the efficiency of heat pipe evacuated-tube solar-collector (HPETC) is proposed for incorporating the phase-change materials (PCMs) in both off-demand and regular operation. The proposed hybrid approach is called an improved honey badger algorithm (HBA). The crossover and mutation operator improves the honey badger's (HB) foraging habit. The proposed approach aims to generate hot air at various rates of airflow under incident and nonincident solar-radiation situations. The analysis is done on the effects of different energy-storage systems and the position of the heat pipe (HP). In a normal heat-pipe evacuated-tube solar collector, the HP is put within the glass tube that is closer to the upper-surface, and it is held in place through an aluminum fin. However, in the proposed method, the HP is rearranged in the tube's middle. In order to identify the PCM with the highest average-fin temperature, the temperatures of the area-weighted average-fin are measured and compared throughout the glass tubes under typical conditions. For maximizing the thermal-energy carrying capability, the average liquid fraction volume of PCMs is measured for a 24-h flow period. The average liquid-fraction volume of PCMs is continuously observed in stagnation mode till the glass tube reaches the maximal value. The structured mesh patch conforming method is used to invalidate the HPETC system's constituent parts, improving numerical stability and convergence. The proposed method efficiency is 0.43. The proposed method shows high efficiency compared with other existing methods.
引用
收藏
页数:28
相关论文
共 50 条
  • [31] Performance Evaluation of Dual Purposes Solar Heating System Using Heat Pipe Evacuated Tube Solar Collector
    El-Ghetany, H. H.
    Hassan, S. A.
    EGYPTIAN JOURNAL OF CHEMISTRY, 2021, 64 (07): : 3297 - 3303
  • [32] Experimental evaluation of the efficiency of a solar tube collector evacuated with and without heat pipe
    Eufracio Arias, Wilder Efrain
    Abregu Rodriguez, Nathaly Ibeth
    Rodriguez Espinoza, Dayana
    FUENTES EL REVENTON ENERGETICO, 2019, 17 (01): : 7 - 17
  • [33] Thermal performance of heat pipe evacuated tube solar collector integrated with different types of phase change materials at various location
    Alshukri, Mohammed J.
    Eidan, Adel A.
    Najim, Saleh Ismail
    RENEWABLE ENERGY, 2021, 171 : 635 - 646
  • [34] Performance analysis and comparison of concentrated evacuated tube heat pipe solar collectors
    Nkwetta, Dan Nchelatebe
    Smyth, Mervyn
    APPLIED ENERGY, 2012, 98 : 22 - 32
  • [35] Experimental studies of thermal performance of an evacuated tube heat pipe solar collector in Polish climatic conditions
    Siuta-Olcha, Alicja
    Cholewa, Tomasz
    Dopieralska-Howoruszko, Kinga
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2021, 28 (12) : 14319 - 14328
  • [36] Thermal performance of a heat-pipe evacuated-tube solar collector at high inlet temperatures
    Elsheniti, Mahmoud B.
    Kotb, Amr
    Elsamni, Osama
    APPLIED THERMAL ENGINEERING, 2019, 154 : 315 - 325
  • [37] Experimental studies of thermal performance of an evacuated tube heat pipe solar collector in Polish climatic conditions
    Alicja Siuta-Olcha
    Tomasz Cholewa
    Kinga Dopieralska-Howoruszko
    Environmental Science and Pollution Research, 2021, 28 : 14319 - 14328
  • [38] Thermal performance of integrated collector storage solar air heater with evacuated tube and lap joint-type flat micro-heat pipe arrays
    Wang, Zeyu
    Diao, Yanhua
    Zhao, Yaohua
    Chen, Chuanqi
    Liang, Lin
    Wang, Tengyue
    APPLIED ENERGY, 2020, 261 (261)
  • [39] Analysis of heat transfer characteristics for parabolic trough solar collector system with heat-pipe evacuated tube
    Zhang W.
    Wang J.
    Tian R.
    Xue Q.
    Ba X.
    2018, Chinese Society of Agricultural Engineering (34): : 202 - 209
  • [40] COMPUTATIONAL FLUID DYNAMICS MODELING OF A HEAT PIPE EVACUATED TUBE SOLAR COLLECTOR INTEGRATED WITH PHASE CHANGE MATERIAL
    Pawar, Vivek R.
    Sobhansarbandi, Sarvenaz
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2019, VOL 6, 2019,