The barycentric rational predictor-corrector schemes for Volterra integral equations

被引:4
|
作者
Abdi, A. [1 ,2 ,4 ]
Berrut, J. -P. [3 ]
Podhaisky, H. [4 ]
机构
[1] Univ Tabriz, Fac Math Stat & Comp Sci, Tabriz, Iran
[2] Univ Tabriz, Res Dept Computat Algorithms & Math Models, Tabriz, Iran
[3] Univ Fribourg, Dept Math, CH-1700 Fribourg, Switzerland
[4] Martin Luther Univ Halle Wittenberg, Inst Math, Halle, Saale, Germany
关键词
Volterra integral equations; Linear barycentric rational interpolation; Direct quadrature method; Barycentric rational quadrature; Stability analysis; RUNGE-KUTTA METHODS; 2ND KIND; COLLOCATION METHODS; NUMERICAL-SOLUTION; 2-STEP; CONSTRUCTION;
D O I
10.1016/j.cam.2023.115611
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper introduces a family of barycentric rational predictor-corrector schemes based on the Floater-Hormann family of linear barycentric rational interpolants (LBRIs) for the numerical solution of classical systems of second-kind Volterra integral equations. Also, we introduce a family of LBRI-based predictor-corrector starting procedures that is essentially explicit and whose order of convergence can be as high as that of the main method. Numerical tests verify the theoretical results on the convergence order and stability and illustrate the efficiency and power of the developed family of methods in solving stiff equations.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Stability analysis of predictor-corrector schemes for coupling neutronics and depletion
    Cosgrove, P.
    Shwageraus, E.
    Parks, G. T.
    ANNALS OF NUCLEAR ENERGY, 2020, 149
  • [32] Predictor-Corrector Schemes for Visualization of Smoothed Particle Hydrodynamics Data
    Schindler, Benjamin
    Fuchs, Raphael
    Biddiscombe, John
    Peikert, Ronald
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2009, 15 (06) : 1243 - 1250
  • [33] Approximate solution of Volterra-Fredholm integral equations using generalized barycentric rational interpolant
    Hadis Azin
    Fakhrodin Mohammadi
    Applied Mathematics:A Journal of Chinese Universities, 2024, 39 (02) : 220 - 238
  • [34] Sequential predictor-corrector methods for the variable regularization of Volterra inverse problems
    Lamm, PK
    Scofield, TL
    INVERSE PROBLEMS, 2000, 16 (02) : 373 - 399
  • [35] Explicit methods based on barycentric rational interpolants for solving non-stiff Volterra integral equations
    Abdi, A.
    Berrut, J-P
    Hosseini, S. A.
    APPLIED NUMERICAL MATHEMATICS, 2022, 174 : 127 - 141
  • [36] Numerical solution of fuzzy differential equations by predictor-corrector method
    Allahviranloo, T.
    Ahmady, N.
    Ahmady, E.
    INFORMATION SCIENCES, 2007, 177 (07) : 1633 - 1647
  • [37] Fast predictor-corrector approach for the tempered fractional differential equations
    Jingwei Deng
    Lijing Zhao
    Yujiang Wu
    Numerical Algorithms, 2017, 74 : 717 - 754
  • [38] Multi-step Hermite-Birkhoff predictor-corrector schemes
    Manikantan, Arjun Thenery
    Schutz, Jochen
    APPLIED NUMERICAL MATHEMATICS, 2024, 205 : 281 - 295
  • [39] Strong predictor-corrector Euler methods for stochastic differential equations
    Bruti-Liberati, Nicola
    Platen, Eckhard
    STOCHASTICS AND DYNAMICS, 2008, 8 (03) : 561 - 581
  • [40] A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations
    Kai Diethelm
    Neville J. Ford
    Alan D. Freed
    Nonlinear Dynamics, 2002, 29 : 3 - 22