A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations

被引:7
|
作者
Kai Diethelm
Neville J. Ford
Alan D. Freed
机构
[1] Technische Universität Braunschweig,Institut für Angewandte Mathematik
[2] Chester College,Department of Mathematics
[3] NASA's John H. Glenn Research Center at Lewis Field,Polymers Branch
来源
Nonlinear Dynamics | 2002年 / 29卷
关键词
fractional differential equation; Caputo derivative; numerical solution; predictor-corrector method; Adams method;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss an Adams-type predictor-corrector method for the numericalsolution of fractional differential equations. The method may be usedboth for linear and for nonlinear problems, and it may be extended tomulti-term equations (involving more than one differential operator)too.
引用
收藏
页码:3 / 22
页数:19
相关论文
共 50 条
  • [1] A predictor-corrector approach for the numerical solution of fractional differential equations
    Diethelm, K
    Ford, NJ
    Freed, AD
    NONLINEAR DYNAMICS, 2002, 29 (1-4) : 3 - 22
  • [2] A new predictor-corrector method for the numerical solution of fractional differential equations
    Yu, Jimin
    Wang, Chen
    Wu, Weihong
    Huang, Xiaofei
    Luo, Rong
    PROCEEDINGS OF THE 2015 3RD INTERNATIONAL CONFERENCE ON MACHINERY, MATERIALS AND INFORMATION TECHNOLOGY APPLICATIONS, 2015, 35 : 1638 - 1641
  • [3] Fast predictor-corrector approach for the tempered fractional differential equations
    Jingwei Deng
    Lijing Zhao
    Yujiang Wu
    Numerical Algorithms, 2017, 74 : 717 - 754
  • [4] Numerical solution of fuzzy differential equations by predictor-corrector method
    Allahviranloo, T.
    Ahmady, N.
    Ahmady, E.
    INFORMATION SCIENCES, 2007, 177 (07) : 1633 - 1647
  • [5] Fast predictor-corrector approach for the tempered fractional differential equations
    Deng, Jingwei
    Zhao, Lijing
    Wu, Yujiang
    NUMERICAL ALGORITHMS, 2017, 74 (03) : 717 - 754
  • [6] Short memory principle and a predictor-corrector approach for fractional differential equations
    Deng, Weihua
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 206 (01) : 174 - 188
  • [7] Numerical solution of fuzzy differential equations by hybrid predictor-corrector method
    Yang, Cheng-Fu
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2011, 13 (04) : 743 - 755
  • [8] Numerical solution of hybrid fuzzy differential equations by predictor-corrector method
    Prakash, P.
    Kalaiselvi, V.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2009, 86 (01) : 121 - 134
  • [9] A new predictor-corrector method for fractional differential equations
    Daftardar-Gejji, Varsha
    Sukale, Yogita
    Bhalekar, Sachin
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 244 : 158 - 182
  • [10] A universal predictor-corrector algorithm for numerical simulation of generalized fractional differential equations
    Odibat, Zaid
    NONLINEAR DYNAMICS, 2021, 105 (03) : 2363 - 2374