The barycentric rational predictor-corrector schemes for Volterra integral equations
被引:4
|
作者:
Abdi, A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tabriz, Fac Math Stat & Comp Sci, Tabriz, Iran
Univ Tabriz, Res Dept Computat Algorithms & Math Models, Tabriz, Iran
Martin Luther Univ Halle Wittenberg, Inst Math, Halle, Saale, GermanyUniv Tabriz, Fac Math Stat & Comp Sci, Tabriz, Iran
Abdi, A.
[1
,2
,4
]
Berrut, J. -P.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fribourg, Dept Math, CH-1700 Fribourg, SwitzerlandUniv Tabriz, Fac Math Stat & Comp Sci, Tabriz, Iran
Berrut, J. -P.
[3
]
Podhaisky, H.
论文数: 0引用数: 0
h-index: 0
机构:
Martin Luther Univ Halle Wittenberg, Inst Math, Halle, Saale, GermanyUniv Tabriz, Fac Math Stat & Comp Sci, Tabriz, Iran
Podhaisky, H.
[4
]
机构:
[1] Univ Tabriz, Fac Math Stat & Comp Sci, Tabriz, Iran
[2] Univ Tabriz, Res Dept Computat Algorithms & Math Models, Tabriz, Iran
Volterra integral equations;
Linear barycentric rational interpolation;
Direct quadrature method;
Barycentric rational quadrature;
Stability analysis;
RUNGE-KUTTA METHODS;
2ND KIND;
COLLOCATION METHODS;
NUMERICAL-SOLUTION;
2-STEP;
CONSTRUCTION;
D O I:
10.1016/j.cam.2023.115611
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
This paper introduces a family of barycentric rational predictor-corrector schemes based on the Floater-Hormann family of linear barycentric rational interpolants (LBRIs) for the numerical solution of classical systems of second-kind Volterra integral equations. Also, we introduce a family of LBRI-based predictor-corrector starting procedures that is essentially explicit and whose order of convergence can be as high as that of the main method. Numerical tests verify the theoretical results on the convergence order and stability and illustrate the efficiency and power of the developed family of methods in solving stiff equations.(c) 2023 Elsevier B.V. All rights reserved.
机构:
Cent S Univ, Sch Math & Stat, Changsha 410075, Hunan, Peoples R China
Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R ChinaCent S Univ, Sch Math & Stat, Changsha 410075, Hunan, Peoples R China
Niu, Yuanling
Zhang, Chengjian
论文数: 0引用数: 0
h-index: 0
机构:
Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R ChinaCent S Univ, Sch Math & Stat, Changsha 410075, Hunan, Peoples R China
Zhang, Chengjian
Burrage, Kevin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Oxford, Dept Comp Sci, Oxford OX1 3QD, England
Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, AustraliaCent S Univ, Sch Math & Stat, Changsha 410075, Hunan, Peoples R China
机构:
Gansu Coll Tradit Chinese Med, Dept Publ Courses, Lanzhou 730000, Peoples R ChinaGansu Coll Tradit Chinese Med, Dept Publ Courses, Lanzhou 730000, Peoples R China
Shang, Dequan
Guo, Xiaobin
论文数: 0引用数: 0
h-index: 0
机构:
Northwest Normal Univ, Coll Math & Stat, Lanzhou 730070, Peoples R ChinaGansu Coll Tradit Chinese Med, Dept Publ Courses, Lanzhou 730000, Peoples R China
机构:
RAS, Inst Computat Math & Math Geophys Sobolev, SB, Pr Ak Lavrentieva 6, Novosibirsk 630090, RussiaRAS, Inst Computat Math & Math Geophys Sobolev, SB, Pr Ak Lavrentieva 6, Novosibirsk 630090, Russia
Voronin, K. V.
Laevsky, Yu. M.
论文数: 0引用数: 0
h-index: 0
机构:
RAS, Inst Computat Math & Math Geophys Sobolev, SB, Pr Ak Lavrentieva 6, Novosibirsk 630090, RussiaRAS, Inst Computat Math & Math Geophys Sobolev, SB, Pr Ak Lavrentieva 6, Novosibirsk 630090, Russia