A Polarimetric Decomposition and Copula Quantile Regression Approach for Soil Moisture Estimation From Radarsat-2 Data Over Vegetated Areas

被引:3
|
作者
Zhang, Li [1 ,2 ]
Wang, Rui [1 ,2 ]
Chai, Huiming [1 ]
Lv, Xiaolei [1 ,2 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Technol GeoSpatial Informat Proc & Applica, Beijing 100094, Peoples R China
[2] Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100049, Peoples R China
关键词
Estimation; Vegetation mapping; Synthetic aperture radar; Soil moisture; Remote sensing; Probabilistic logic; Backscatter; Copula; corn-covered areas; polarimetric decomposition; surface soil moisture (SSM); OPTICAL TRAPEZOID MODEL; SURFACE-ROUGHNESS; RETRIEVAL; SCATTERING; BACKSCATTERING; PREDICTION; PARAMETERS; EMISSION; DYNAMICS; WATER;
D O I
10.1109/JSTARS.2023.3262194
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article proposes a novel framework for probabilistic estimation of surface soil moisture (SSM) based on polarimetric decomposition and copula quantile regression, mainly focusing on solving the low correlation between synthetic aperture radar (SAR) backscattering coefficients and SSM in corn-covered areas. Cloude-Pottier decomposition and adaptive nonnegative eigenvalue decomposition can extract more polarization parameters, explaining the implicit information in polarization data from different theoretical levels. Polarization parameters and the backscattering coefficients for different polarizations constitute predictor variable parameters for estimating the SSM. The dimensionality of the predictor variable parameters is reduced by supervised principal component analysis to derive the first principal component. SPCA ensures a high correlation between the first principal component and the SSM. Finally, the Archimedes copula function simply and effectively constructs the nonlinear relationship between SSM and the first principal component to complete the quantile regression estimation of SSM. Results show that the root-mean-square error range of SSM estimation is 0.039-0.078 cm(3)/cm(3) and the correlation coefficient (R) is 0.401-0.761. In addition, copula quantile regression constructs an uncertainty range for the SSM estimate, which can be used to judge the reliability of the estimate.
引用
收藏
页码:3405 / 3417
页数:13
相关论文
共 50 条
  • [41] Estimate the soil moisture over Semi-arid Region of Loess Plateau using Radarsat-2 SAR data
    Hu, D.
    Guo, N.
    Wang, L. J.
    Sha, S.
    LAND SURFACE REMOTE SENSING II, 2014, 9260
  • [42] USE OF RADARSAT-2 IMAGES TO DEVELOP A SCALING METHOD OF SOIL MOISTURE OVER AN AGRICULTURAL AREA
    Gherboudj, Imen
    Magagi, Ramata
    Berg, Aaron
    Toth, Brenda
    2009 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-5, 2009, : 1812 - +
  • [43] A Soil Moisture Retrieval Method Based on Typical Polarization Decomposition Techniques for a Maize Field from Full-Polarization Radarsat-2 Data
    Xie, Qiuxia
    Meng, Qingyan
    Zhang, Linlin
    Wang, Chunmei
    Sun, Yunxiao
    Sun, Zhenhui
    REMOTE SENSING, 2017, 9 (02)
  • [44] Analysis of Polarimetric Radar Data and Soil Moisture From Aquarius: Towards a Regression-Based Soil Moisture Estimation Algorithm
    Burgin, Mariko S.
    van Zyl, Jakob J.
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (08) : 3497 - 3504
  • [45] A modified empirical model for soil moisture estimation in vegetated areas using SAR data
    Sikdar, M
    Cumming, I
    IGARSS 2004: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS, VOLS 1-7: SCIENCE FOR SOCIETY: EXPLORING AND MANAGING A CHANGING PLANET, 2004, : 803 - 806
  • [46] Spatiotemporal Variability of Arctic Soil Moisture Detected from High-Resolution RADARSAT-2 SAR Data
    Collingwood, Adam
    Charbonneau, Francois
    Shang, Chen
    Treitz, Paul
    ADVANCES IN METEOROLOGY, 2018, 2018
  • [47] Utilizing both Radarsat-2 And TerraSAR-X Polarimetric Data For Crop Growth Stages Estimation
    Li, Yifeng
    Lampropoulos, George
    2017 22ND INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), 2017,
  • [48] SOIL MOISTURE RETRIEVAL USING MODIFIED VEGETATION BACKSCATTERING MODEL BASED ON RADARSAT-2 DATA
    Tao, Liangliang
    Wang, Guojie
    He, Shi
    Chen, Xi
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 9102 - 9105
  • [49] SOIL MOISTURE RETRIEVAL USING RADARSAT-2 AND HJ-1 CCD DATA IN GRASSLAND
    Xing, Minfeng
    He, Binbin
    Li, Xiaowen
    Quan, Xingwen
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014,
  • [50] Combining of the H/A/Alpha and Freeman-Durden Polarization Decomposition Methods for Soil Moisture Retrieval from Full-Polarization Radarsat-2 Data
    Xie, Qiuxia
    Meng, Qingyan
    Zhang, Linlin
    Wang, Chunmei
    Wang, Qiao
    Zhao, Shaohua
    ADVANCES IN METEOROLOGY, 2018, 2018