A Polarimetric Decomposition and Copula Quantile Regression Approach for Soil Moisture Estimation From Radarsat-2 Data Over Vegetated Areas

被引:3
|
作者
Zhang, Li [1 ,2 ]
Wang, Rui [1 ,2 ]
Chai, Huiming [1 ]
Lv, Xiaolei [1 ,2 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Technol GeoSpatial Informat Proc & Applica, Beijing 100094, Peoples R China
[2] Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100049, Peoples R China
关键词
Estimation; Vegetation mapping; Synthetic aperture radar; Soil moisture; Remote sensing; Probabilistic logic; Backscatter; Copula; corn-covered areas; polarimetric decomposition; surface soil moisture (SSM); OPTICAL TRAPEZOID MODEL; SURFACE-ROUGHNESS; RETRIEVAL; SCATTERING; BACKSCATTERING; PREDICTION; PARAMETERS; EMISSION; DYNAMICS; WATER;
D O I
10.1109/JSTARS.2023.3262194
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article proposes a novel framework for probabilistic estimation of surface soil moisture (SSM) based on polarimetric decomposition and copula quantile regression, mainly focusing on solving the low correlation between synthetic aperture radar (SAR) backscattering coefficients and SSM in corn-covered areas. Cloude-Pottier decomposition and adaptive nonnegative eigenvalue decomposition can extract more polarization parameters, explaining the implicit information in polarization data from different theoretical levels. Polarization parameters and the backscattering coefficients for different polarizations constitute predictor variable parameters for estimating the SSM. The dimensionality of the predictor variable parameters is reduced by supervised principal component analysis to derive the first principal component. SPCA ensures a high correlation between the first principal component and the SSM. Finally, the Archimedes copula function simply and effectively constructs the nonlinear relationship between SSM and the first principal component to complete the quantile regression estimation of SSM. Results show that the root-mean-square error range of SSM estimation is 0.039-0.078 cm(3)/cm(3) and the correlation coefficient (R) is 0.401-0.761. In addition, copula quantile regression constructs an uncertainty range for the SSM estimate, which can be used to judge the reliability of the estimate.
引用
收藏
页码:3405 / 3417
页数:13
相关论文
共 50 条
  • [31] Water-Body types identification in urban areas from radarsat-2 fully polarimetric SAR data
    Xie, Lei
    Zhang, Hong
    Wang, Chao
    Chen, Fulong
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2016, 50 : 10 - 25
  • [32] Wheat lodging monitoring using polarimetric index from RADARSAT-2 data
    Yang, Hao
    Chen, Erxue
    Li, Zengyuan
    Zhao, Chunjiang
    Yang, Guijun
    Pignatti, Stefano
    Casa, Raffaele
    Zhao, Lei
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2015, 34 : 157 - 166
  • [33] Estimating Soil Moisture over Winter Wheat Fields during Growing Season Using RADARSAT-2 Data
    Chen, Lin
    Xing, Minfeng
    He, Binbin
    Wang, Jinfei
    Xu, Min
    Song, Yang
    Huang, Xiaodong
    REMOTE SENSING, 2022, 14 (09)
  • [34] ITERATIVE MULTISTAGE POLARIMETRIC SCATTERING DECOMPOSITION OF RADARSAT-2 AND ALOS-2 PALSAR-2 DATA
    Lee, Ken Yoong
    Ang, Yong Peng
    Shi, Chenghua
    Wiratama, Wahyu
    Lim, Kim Hwa
    Liew, Soo Chin
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 8022 - 8025
  • [35] Surface Soil Moisture Estimation from Time Series of RADARSAT Constellation Mission Compact Polarimetric Data for the Identification of Water-Saturated Areas
    Zakharov, Igor
    Kohlsmith, Sarah
    Hornung, Jon
    Charbonneau, Francois
    Bobby, Pradeep
    Howell, Mark
    REMOTE SENSING, 2024, 16 (14)
  • [36] Modeling Surface Roughness to Estimate Surface Moisture Using Radarsat-2 Quad Polarimetric SAR Data
    Nurtyawan, R.
    Saepuloh, A.
    Budiharto, A.
    Wikantika, K.
    6TH ASIAN PHYSICS SYMPOSIUM, 2016, 739
  • [37] Digital Mapping of Soil Texture Using RADARSAT-2 Polarimetric Synthetic Aperture Radar Data
    Niang, Mohamed A.
    Nolin, Michel C.
    Jego, Guillaume
    Perron, Isabelle
    SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 2014, 78 (02) : 673 - 684
  • [38] Multi-resolution soil moisture retrievals by disaggregating SMAP brightness temperatures with RADARSAT-2 polarimetric decompositions
    Wang, Hongquan
    Magagi, Ramata
    Goita, Kalifa
    Colliander, Andreas
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2022, 115
  • [39] A method to obtain soil-moisture estimates over bare agricultural fields in arid areas by using multi-angle RADARSAT-2 data
    Wang, JunZhan
    Qu, JianJun
    Tan, LiHai
    Zhang, KeCun
    SCIENCES IN COLD AND ARID REGIONS, 2018, 10 (02): : 145 - 150
  • [40] Soil moisture retrieval over agricultural fields from multi-polarized and multi-angular RADARSAT-2 SAR data
    Gherboudj, Imen
    Magagi, Ramata
    Berg, Aaron A.
    Toth, Brenda
    REMOTE SENSING OF ENVIRONMENT, 2011, 115 (01) : 33 - 43