A Polarimetric Decomposition and Copula Quantile Regression Approach for Soil Moisture Estimation From Radarsat-2 Data Over Vegetated Areas

被引:3
|
作者
Zhang, Li [1 ,2 ]
Wang, Rui [1 ,2 ]
Chai, Huiming [1 ]
Lv, Xiaolei [1 ,2 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Technol GeoSpatial Informat Proc & Applica, Beijing 100094, Peoples R China
[2] Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100049, Peoples R China
关键词
Estimation; Vegetation mapping; Synthetic aperture radar; Soil moisture; Remote sensing; Probabilistic logic; Backscatter; Copula; corn-covered areas; polarimetric decomposition; surface soil moisture (SSM); OPTICAL TRAPEZOID MODEL; SURFACE-ROUGHNESS; RETRIEVAL; SCATTERING; BACKSCATTERING; PREDICTION; PARAMETERS; EMISSION; DYNAMICS; WATER;
D O I
10.1109/JSTARS.2023.3262194
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article proposes a novel framework for probabilistic estimation of surface soil moisture (SSM) based on polarimetric decomposition and copula quantile regression, mainly focusing on solving the low correlation between synthetic aperture radar (SAR) backscattering coefficients and SSM in corn-covered areas. Cloude-Pottier decomposition and adaptive nonnegative eigenvalue decomposition can extract more polarization parameters, explaining the implicit information in polarization data from different theoretical levels. Polarization parameters and the backscattering coefficients for different polarizations constitute predictor variable parameters for estimating the SSM. The dimensionality of the predictor variable parameters is reduced by supervised principal component analysis to derive the first principal component. SPCA ensures a high correlation between the first principal component and the SSM. Finally, the Archimedes copula function simply and effectively constructs the nonlinear relationship between SSM and the first principal component to complete the quantile regression estimation of SSM. Results show that the root-mean-square error range of SSM estimation is 0.039-0.078 cm(3)/cm(3) and the correlation coefficient (R) is 0.401-0.761. In addition, copula quantile regression constructs an uncertainty range for the SSM estimate, which can be used to judge the reliability of the estimate.
引用
收藏
页码:3405 / 3417
页数:13
相关论文
共 50 条
  • [21] Estimation of Soil Moisture from Multi-Polarized Synthetic Aperture Radar Data-A Case Examination on RADARSAT-2 Product Over Wheat Growing Areas
    Yang, Guijun
    Shi, Yuechan
    Xu, Qingyun
    SENSOR LETTERS, 2013, 11 (6-7) : 1081 - 1086
  • [22] Evaluation of Simplified Polarimetric Decomposition for Soil Moisture Retrieval over Vegetated Agricultural Fields
    Wang, Hongquan
    Magagi, Ramata
    Goita, Kalifa
    Jagdhuber, Thomas
    Hajnsek, Irena
    REMOTE SENSING, 2016, 8 (02)
  • [23] ESTIMATING SOIL MOISTURE IN THE AGRICULTURAL AREAS USING RADARSAT-2 QUAD-POLARIZATION SAR DATA
    Ma, Jianwei
    Huang, Shifeng
    Li, Jiren
    Li, Xiaotao
    Song, Xiaoning
    Leng, Pei
    Sun, Yayong
    Lei, Tianjie
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 3031 - 3034
  • [24] Urban Impervious Surfaces Estimation from RADARSAT-2 Polarimetric Data Using SVM Method
    Li, Xinwu
    Guo, Huadong
    Sun, Zhongchang
    Shen, Guozhuang
    PIERS 2011 SUZHOU: PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM, 2011, : 807 - 812
  • [25] Snow Cover Extraction in Mountain Areas Using RadarSat-2 Polarimetric SAR data
    He, G. J.
    Jiang, J. X.
    Xia, Z. H.
    Hao, Y.
    Xiao, P. F.
    Feng, X. Z.
    Wang, Z.
    PROCEEDINGS OF 2016 16TH INTERNATIONAL CONFERENCE ON GROUND PENETRATING RADAR (GPR), 2016,
  • [26] Soil Moisture Inversion Via Semiempirical and Machine Learning Methods With Full-Polarization Radarsat-2 and Polarimetric Target Decomposition Data: A Comparative Study
    Acar, Huseyin
    Ozerdem, Mehmet Sirac
    Acar, Emrullah
    IEEE ACCESS, 2020, 8 : 197896 - 197907
  • [27] RADARSAT-2 AND TERRASAR-X POLARIMETRIC DATA FOR CROP GROWTH STAGES ESTIMATION
    Li, Yifeng
    Lampropoulos, George
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 4510 - 4513
  • [28] Mapping Soil Moisture Using RADARSAT-2 Data and Local Autocorrelation Statistics
    Merzouki, Amine
    McNairn, Heather
    Pacheco, Anna
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2011, 4 (01) : 128 - 137
  • [29] SOIL MOISTURE RETRIEVAL IN WELL COVERED FARMLAND BY RADARSAT-2 SAR DATA
    Yue, Jibo
    Yang, Guijun
    Qi, Xiudong
    Wang, Yanjie
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 1699 - 1702
  • [30] SENSITIVITY OF RADARSAT-2 QUAD POLARIMETRIC AND SIMULATED COMPACT POLARIMETRIC PARAMETERS TO SOIL MOISTURE AND FREEZE/THAW STATE IN SOUTHWEST ONTARIO
    Tang, Wen
    Kelly, Richard
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014,