An Application of BMO-type Space to Chemotaxis-fluid Equations

被引:4
|
作者
Yang, Ming Hua [1 ]
Zi, Yu Mei [2 ]
Fu, Zun Wei [2 ,3 ]
机构
[1] Jiangxi Univ Finance & Econ, Dept Math, Nanchang 330032, Peoples R China
[2] Linyi Univ, Dept Math, Linyi 276005, Peoples R China
[3] Univ Suwon, Coll Informat Technol, 743 Bongdameup, Hwaseong 445743, Gyeonggi Do, South Korea
关键词
BMO-type space; Fourier transform; Besov space; Keller-Segel equation; Navier-Stokes equation; NAVIER-STOKES EQUATIONS; KELLER-SEGEL SYSTEM; GLOBAL EXISTENCE; WELL-POSEDNESS; ASYMPTOTIC-BEHAVIOR; MILD SOLUTIONS; MORREY SPACES; INITIAL DATA; UNIQUENESS;
D O I
10.1007/s10114-023-1514-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a Keller-Segel model coupled to the incompressible Navier-Stokes system in 3-dimensional case. We prove that the system has a unique local solution when (u(0), n(0), c(0)) is an element of Phi(1)(01) x Phi(2)(01) x Phi(3)(01) x where Phi(1)(01) x Phi(2)(01) x Phi(3)(01) is a subspace of bmo(-1)(R-3)x(B) over dot(p,infinity)(-2+3/p) (R-3)x((B) over dot(p,infinity)(3/q) (R-3)boolean AND L-infinity (R-3)). Furthermore, we obtain that the system exists a unique global solution for any small initial data (u(0), n(0), c(0)) is an element of BMO-1(R-3) x . (B) over dot(p,infinity)(2+3/p) (R-3) x ((B) over dot(p,infinity)(3/q)(R-3) boolean AND L-infinity (R-3)). For the difference between these spaces and known ones, our results may be regarded as a new existence theorem on the system.
引用
收藏
页码:1650 / 1666
页数:17
相关论文
共 50 条
  • [1] An Application of BMO-type Space to Chemotaxis-fluid Equations
    Ming Hua YANG
    Yu Mei ZI
    Zun Wei FU
    Acta Mathematica Sinica,English Series, 2023, (08) : 1650 - 1666
  • [2] An Application of BMO-type Space to Chemotaxis-fluid Equations
    Ming Hua Yang
    Yu Mei Zi
    Zun Wei Fu
    Acta Mathematica Sinica, English Series, 2023, 39 : 1650 - 1666
  • [3] Global Solutions to the Coupled Chemotaxis-Fluid Equations
    Duan, Renjun
    Lorz, Alexander
    Markowich, Peter
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2010, 35 (09) : 1635 - 1673
  • [4] Local and some type of large solutions for the chemotaxis-fluid equations with partial dissipation
    Chen, Qionglei
    Hao, Xiaonan
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 217
  • [5] EXISTENCE OF SMOOTH SOLUTIONS TO COUPLED CHEMOTAXIS-FLUID EQUATIONS
    Chae, Myeongju
    Kang, Kyungkeun
    Lee, Jihoon
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (06) : 2271 - 2297
  • [6] A regularity condition and temporal asymptotics for chemotaxis-fluid equations
    Chae, Myeongju
    Kang, Kyungkeun
    Lee, Jihoon
    Lee, Ki-Ahm
    NONLINEARITY, 2018, 31 (02) : 351 - 387
  • [7] Local-in-Time Solvability and Space Analyticity for the Navier–Stokes Equations with BMO-Type Initial Data
    Liaosha Xu
    Archive for Rational Mechanics and Analysis, 2020, 236 : 389 - 417
  • [8] Perimeter of sets and BMO-type norms
    Ambrosio, Luigi
    Bourgain, Jean
    Brezis, Haim
    Figalli, Alessio
    COMPTES RENDUS MATHEMATIQUE, 2014, 352 (09) : 697 - 698
  • [9] BMO-Type Norms Related to the Perimeter of Sets
    Ambrosio, Luigi
    Bourgain, Jean
    Brezis, Haim
    Figalli, Alessio
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2016, 69 (06) : 1062 - 1086
  • [10] Analyticity of the Stokes semigroup in BMO-type spaces
    Bolkart, Martin
    Giga, Yoshikazu
    Suzuki, Takuya
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2018, 70 (01) : 153 - 177