Large and infinite-order solitons of the coupled nonlinear Schrödinger equation

被引:7
|
作者
Ling, Liming [1 ]
Zhang, Xiaoen [1 ]
机构
[1] South China Univ Technol, Sch Math, Guangzhou 510641, Peoples R China
基金
中国国家自然科学基金;
关键词
Coupled nonlinear Schrodinger equation; High-order solitons; Infinite-order solitons; Asymptotic analysis; Riemann-Hilbert problem; Darboux transformation; LONG-TIME ASYMPTOTICS; STEEPEST DESCENT METHOD; MULTIPLE-POLE SOLITONS; SCHRODINGER-EQUATION; BRIGHT;
D O I
10.1016/j.physd.2023.133981
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the large-order and infinite-order solitons of the coupled nonlinear Schrodinger equation with the Riemann-Hilbert method. By using the Riemann-Hilbert representation of the high-order Darboux dressing matrix, the large-order and infinite-order solitons can be analyzed directly without using inverse scattering transform. We firstly disclose the asymptotics for large-order solitons, which are divided into four different regions-the genus one region, the genus zero region, the exponential decay and the algebraic decay region. We verify the consistency between asymptotic solutions and exact solutions by the Darboux dressing method numerically. Moreover, we consider the property and dynamics for infinite-order solitons-a special limitation for the larger order solitons. It is shown that the genus one region and exponential decay region will disappear for the infinite-order solitons.
引用
收藏
页数:43
相关论文
共 50 条
  • [41] Optical solitons to the nonlinear Schrödinger equation in metamaterials and modulation instability
    Souleymanou Abbagari
    Alphonse Houwe
    Serge P. Mukam
    Hadi Rezazadeh
    Mustafa Inc
    Serge Y. Doka
    Thomas B. Bouetou
    The European Physical Journal Plus, 136
  • [42] Bound states of envelope solitons in coupled nonlinear schrödinger equations
    Compl. Sci. and Eng. Research Center, Howard University, Washington, DC 20059, United States
    J. Nonlinear Opt. Phys. Mater., 1 (49-53):
  • [43] The existence of discrete solitons for the discrete coupled nonlinear Schrödinger system
    Meihua Huang
    Zhan Zhou
    Boundary Value Problems, 2023
  • [44] Bright N-Solitons for the Intermediate Nonlinear Schrödinger Equation
    Yohei Tutiya
    Journal of Nonlinear Mathematical Physics, 2009, 16 : 7 - 23
  • [45] Symplectic simulation of dark solitons motion for nonlinear Schrödinger equation
    Beibei Zhu
    Yifa Tang
    Ruili Zhang
    Yihao Zhang
    Numerical Algorithms, 2019, 81 : 1485 - 1503
  • [46] Interactions of vector anti-dark solitons for the coupled nonlinear Schrödinger equation in inhomogeneous fibers
    Yujia Zhang
    Chunyu Yang
    Weitian Yu
    Mohammad Mirzazadeh
    Qin Zhou
    Wenjun Liu
    Nonlinear Dynamics, 2018, 94 : 1351 - 1360
  • [47] Numerical Computation of Dark Solitons of a Nonlocal Nonlinear Schrödinger Equation
    de Laire, Andre
    Dujardin, Guillaume
    Lopez-Martinez, Salvador
    JOURNAL OF NONLINEAR SCIENCE, 2024, 34 (01)
  • [48] Bilinearization of Coupled Nonlinear Schrödinger Type Equations: Integrabilty and Solitons
    K. Porsezian
    Journal of Nonlinear Mathematical Physics, 1998, 5 : 126 - 131
  • [49] Exact Solutions to Nonlinear Schr(?)dinger Equation and Higher-Order Nonlinear Schr(?)inger Equation
    REN Ji RUAN Hang-Yu Department of Physics
    Communications in Theoretical Physics, 2008, 50 (09) : 575 - 578
  • [50] Exact solutions and conservation laws of the fourth-order nonlinear Schrödinger equation for the embedded solitons
    Kudryashov N.A.
    Nifontov D.R.
    Optik, 2024, 303