Large and infinite-order solitons of the coupled nonlinear Schrödinger equation

被引:7
|
作者
Ling, Liming [1 ]
Zhang, Xiaoen [1 ]
机构
[1] South China Univ Technol, Sch Math, Guangzhou 510641, Peoples R China
基金
中国国家自然科学基金;
关键词
Coupled nonlinear Schrodinger equation; High-order solitons; Infinite-order solitons; Asymptotic analysis; Riemann-Hilbert problem; Darboux transformation; LONG-TIME ASYMPTOTICS; STEEPEST DESCENT METHOD; MULTIPLE-POLE SOLITONS; SCHRODINGER-EQUATION; BRIGHT;
D O I
10.1016/j.physd.2023.133981
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the large-order and infinite-order solitons of the coupled nonlinear Schrodinger equation with the Riemann-Hilbert method. By using the Riemann-Hilbert representation of the high-order Darboux dressing matrix, the large-order and infinite-order solitons can be analyzed directly without using inverse scattering transform. We firstly disclose the asymptotics for large-order solitons, which are divided into four different regions-the genus one region, the genus zero region, the exponential decay and the algebraic decay region. We verify the consistency between asymptotic solutions and exact solutions by the Darboux dressing method numerically. Moreover, we consider the property and dynamics for infinite-order solitons-a special limitation for the larger order solitons. It is shown that the genus one region and exponential decay region will disappear for the infinite-order solitons.
引用
收藏
页数:43
相关论文
共 50 条
  • [21] Solitons, kink-solitons and breather solutions of the two-coupled incoherent nonlinear Schrödinger equation
    Yang, Liu
    Gao, Ben
    NONLINEAR DYNAMICS, 2024, 112 (07) : 5591 - 5610
  • [22] Evolution of solitons of nonlinear Schrödinger equation with variable parameters
    Shuangchun Wen
    Wencheng Xu
    Qi Guo
    Songhao Liu
    Science in China Series A: Mathematics, 1997, 40 : 1300 - 1304
  • [23] Solitons, kink-solitons and breather solutions of the two-coupled incoherent nonlinear Schrödinger equation
    Liu Yang
    Ben Gao
    Nonlinear Dynamics, 2024, 112 : 5621 - 5633
  • [24] Orthogonal multi-peak solitons from the coupled fractional nonlinear Schrödinger equation
    dos Santos, Mateus C. P.
    CHAOS SOLITONS & FRACTALS, 2024, 183
  • [25] Bifurcations and optical solitons for the coupled nonlinear Schrödinger equation in optical fiber Bragg gratings
    Lu Tang
    Journal of Optics, 2023, 52 : 1388 - 1398
  • [26] Solitons and dynamics for the integrable nonlocal pair-transition-coupled nonlinear Schrödinger equation
    Lou, Yu
    Zhang, Yi
    Ye, Rusuo
    Li, Miao
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 409
  • [27] Bright–dark solitons in the space-shifted nonlocal coupled nonlinear Schrödinger equation
    Ping Ren
    Jiguang Rao
    Nonlinear Dynamics, 2022, 108 : 2461 - 2470
  • [28] Nonautonomous solitons and breathers for the coupled variable-coefficient derivative nonlinear Schrödinger equation
    Wu, Sen
    Ding, Cui Cui
    Li, Xian
    NONLINEAR DYNAMICS, 2024, : 10277 - 10290
  • [29] Bright and dark solitons for the fifth-order nonlinear Schr?dinger equation with variable coefficients
    Zhu, Wen-Hui
    Liu, Jian-Guo
    OPTIK, 2023, 276
  • [30] Dark Bound Solitons and Soliton Chains for the Higher-Order Nonlinear Schrödinger Equation
    Zhi-Yuan Sun
    Yi-Tian Gao
    Xiang-Hua Meng
    Xin Yu
    Ying Liu
    International Journal of Theoretical Physics, 2013, 52 : 689 - 698