Large and infinite-order solitons of the coupled nonlinear Schrödinger equation

被引:7
|
作者
Ling, Liming [1 ]
Zhang, Xiaoen [1 ]
机构
[1] South China Univ Technol, Sch Math, Guangzhou 510641, Peoples R China
基金
中国国家自然科学基金;
关键词
Coupled nonlinear Schrodinger equation; High-order solitons; Infinite-order solitons; Asymptotic analysis; Riemann-Hilbert problem; Darboux transformation; LONG-TIME ASYMPTOTICS; STEEPEST DESCENT METHOD; MULTIPLE-POLE SOLITONS; SCHRODINGER-EQUATION; BRIGHT;
D O I
10.1016/j.physd.2023.133981
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the large-order and infinite-order solitons of the coupled nonlinear Schrodinger equation with the Riemann-Hilbert method. By using the Riemann-Hilbert representation of the high-order Darboux dressing matrix, the large-order and infinite-order solitons can be analyzed directly without using inverse scattering transform. We firstly disclose the asymptotics for large-order solitons, which are divided into four different regions-the genus one region, the genus zero region, the exponential decay and the algebraic decay region. We verify the consistency between asymptotic solutions and exact solutions by the Darboux dressing method numerically. Moreover, we consider the property and dynamics for infinite-order solitons-a special limitation for the larger order solitons. It is shown that the genus one region and exponential decay region will disappear for the infinite-order solitons.
引用
收藏
页数:43
相关论文
共 50 条
  • [31] Solitons, rogue waves and interaction behaviors of a third-order nonlinear Schr?dinger equation
    Shi, Kai-Zhong
    Ren, Bo
    Shen, Shou-Feng
    Wang, Guo-Fang
    Peng, Jun-Da
    Wang, Wan-Li
    RESULTS IN PHYSICS, 2022, 37
  • [32] Interactions among solitons for a fifth-order variable coefficient nonlinear Schrödinger equation
    Suzhi Liu
    Qin Zhou
    Anjan Biswas
    Abdullah Kamis Alzahrani
    Wenjun Liu
    Nonlinear Dynamics, 2020, 100 : 2797 - 2805
  • [33] Concentration of coupled cubic nonlinear Schrödinger equation
    Xiao-guang Li
    Jian Zhang
    Applied Mathematics and Mechanics, 2005, 26 : 1357 - 1362
  • [34] Bright hump solitons for the higher-order nonlinear Schrödinger equation in optical fibers
    Yan Jiang
    Bo Tian
    Min Li
    Pan Wang
    Nonlinear Dynamics, 2013, 74 : 1053 - 1063
  • [35] Optical solitons of a high-order nonlinear Schrödinger equation involving nonlinear dispersions and Kerr effect
    K. Hosseini
    M. Mirzazadeh
    D. Baleanu
    S. Salahshour
    L. Akinyemi
    Optical and Quantum Electronics, 2022, 54
  • [36] Numerical Computation of Dark Solitons of a Nonlocal Nonlinear Schrödinger Equation
    André de Laire
    Guillaume Dujardin
    Salvador López-Martínez
    Journal of Nonlinear Science, 2024, 34
  • [37] Embedded Solitons of the Generalized Nonlinear Schrödinger Equation with High Dispersion
    Nikolay A. Kudryashov
    Regular and Chaotic Dynamics, 2022, 27 : 680 - 696
  • [38] Solitons for a generalized variable-coefficient nonlinear Schrdinger equation
    王欢
    李彪
    Chinese Physics B, 2011, 20 (04) : 12 - 19
  • [39] Dynamics of solitons in the one-dimensional nonlinear Schrödinger equation
    Tobias Ilg
    Ramona Tschüter
    Andrej Junginger
    Jörg Main
    Günter Wunner
    The European Physical Journal D, 2016, 70
  • [40] Optical Solitons of Nonlinear Schrödinger Equation with Anomalous Dispersion Regime
    V. Ala
    U. Demirbilek
    Lobachevskii Journal of Mathematics, 2023, 44 : 2551 - 2556