Large and infinite-order solitons of the coupled nonlinear Schrödinger equation

被引:7
|
作者
Ling, Liming [1 ]
Zhang, Xiaoen [1 ]
机构
[1] South China Univ Technol, Sch Math, Guangzhou 510641, Peoples R China
基金
中国国家自然科学基金;
关键词
Coupled nonlinear Schrodinger equation; High-order solitons; Infinite-order solitons; Asymptotic analysis; Riemann-Hilbert problem; Darboux transformation; LONG-TIME ASYMPTOTICS; STEEPEST DESCENT METHOD; MULTIPLE-POLE SOLITONS; SCHRODINGER-EQUATION; BRIGHT;
D O I
10.1016/j.physd.2023.133981
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the large-order and infinite-order solitons of the coupled nonlinear Schrodinger equation with the Riemann-Hilbert method. By using the Riemann-Hilbert representation of the high-order Darboux dressing matrix, the large-order and infinite-order solitons can be analyzed directly without using inverse scattering transform. We firstly disclose the asymptotics for large-order solitons, which are divided into four different regions-the genus one region, the genus zero region, the exponential decay and the algebraic decay region. We verify the consistency between asymptotic solutions and exact solutions by the Darboux dressing method numerically. Moreover, we consider the property and dynamics for infinite-order solitons-a special limitation for the larger order solitons. It is shown that the genus one region and exponential decay region will disappear for the infinite-order solitons.
引用
收藏
页数:43
相关论文
共 50 条
  • [1] Interaction of coupled higher order nonlinear Schrödinger equation solitons
    A. Borah
    S. Ghosh
    S. Nandy
    The European Physical Journal B - Condensed Matter and Complex Systems, 2002, 29 : 221 - 225
  • [2] Domain walls and vector solitons in the coupled nonlinear Schrödinger equation
    Snee, David D. J. M.
    Ma, Yi-Ping
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (03)
  • [3] On the Dynamics of Solitons in the Nonlinear Schrödinger Equation
    Vieri Benci
    Marco Ghimenti
    Anna Maria Micheletti
    Archive for Rational Mechanics and Analysis, 2012, 205 : 467 - 492
  • [4] Colliding Solitons for the Nonlinear Schrödinger Equation
    W. K. Abou Salem
    J. Fröhlich
    I. M. Sigal
    Communications in Mathematical Physics, 2009, 291 : 151 - 176
  • [5] Mixed Higher-Order Rogue Waves and Solitons for the Coupled Modified Nonlinear Schrödinger Equation
    Tao Xu
    Guoliang He
    Ming Wang
    Yanqing Wang
    Qualitative Theory of Dynamical Systems, 2023, 22
  • [6] Optical solitons of the coupled nonlinear Schrödinger’s equation with spatiotemporal dispersion
    Mustafa Inc
    Esma Ates
    Fairouz Tchier
    Nonlinear Dynamics, 2016, 85 : 1319 - 1329
  • [7] Large-Order Asymptotics for Multiple-Pole Solitons of the Focusing Nonlinear Schrödinger Equation
    Deniz Bilman
    Robert Buckingham
    Journal of Nonlinear Science, 2019, 29 : 2185 - 2229
  • [8] Dynamics of solitons in the fourth-order nonlocal nonlinear Schrödinger equation
    T. A. Gadzhimuradov
    A. M. Agalarov
    R. Radha
    B. Tamil Arasan
    Nonlinear Dynamics, 2020, 99 : 1295 - 1300
  • [9] Topological Solitons of the Nonlinear Schrödinger’s Equation with Fourth Order Dispersion
    Anjan Biswas
    Daniela Milovic
    International Journal of Theoretical Physics, 2009, 48
  • [10] Scattering of solitons for the Schrödinger equation coupled to a particle
    A. Komech
    E. Kopylova
    Russian Journal of Mathematical Physics, 2006, 13 : 158 - 187