SYMPLECTIC DIRAC OPERATORS FOR LIE ALGEBRAS AND GRADED HECKE ALGEBRAS

被引:0
|
作者
Ciubotaru, D. [1 ]
De Martino, M. [1 ]
Meyer, P. [1 ]
机构
[1] Univ Oxford, Math Inst, Oxford OX2 6GG, England
基金
英国工程与自然科学研究理事会;
关键词
REPRESENTATIONS;
D O I
10.1007/s00031-022-09762-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to define a pair of symplectic Dirac operators (D+, D-) in an algebraic setting motivated by the analogy with the algebraic orthogonal Dirac operators in representation theory. We work in the settings of DOUBLE-STRUCK CAPITAL Z/2-graded quadratic Lie algebras 𝔤� = 𝔨� + 𝔭� and of graded affine Hecke algebras ℍ. In these contexts, we show analogues of the Parthasarathy's formula for [D+, D-] and certain generalisations of the Casimir inequality.
引用
收藏
页码:1447 / 1475
页数:29
相关论文
共 50 条
  • [41] Symplectic structures on quadratic Lie algebras
    Bajo, Ignacio
    Benayadi, Said
    Medina, Alberto
    JOURNAL OF ALGEBRA, 2007, 316 (01) : 174 - 188
  • [42] Minimal graded Lie algebras and representations of quadratic algebras
    Rubenthaler, Hubert
    JOURNAL OF ALGEBRA, 2017, 473 : 29 - 65
  • [43] A basis for representations of symplectic Lie algebras
    Molev, AI
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 201 (03) : 591 - 618
  • [44] Symplectic Lie algebras with degenerate center
    Fischer, M.
    JOURNAL OF ALGEBRA, 2019, 521 : 257 - 283
  • [45] Complex symplectic structures on Lie algebras
    Bazzoni, Giovanni
    Freibert, Marco
    Latorre, Adela
    Meinke, Benedict
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2021, 225 (06)
  • [46] Symplectic structures on the filiform Lie algebras
    Gómez, JR
    Jiménez-Merchán, A
    Khakimdjanov, Y
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2001, 156 (01) : 15 - 31
  • [47] LIE-ALGEBRAS OF SYMPLECTIC AUTOMORPHISMS
    LICHNEROWICZ, A
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1972, 274 (15): : 1177 - +
  • [48] Structure of symplectic invariant Lie subalgebras of symplectic derivation Lie algebras
    Morita, Shigeyuki
    Sakasai, Takuya
    Suzuki, Masaaki
    ADVANCES IN MATHEMATICS, 2015, 282 : 291 - 334
  • [49] Symplectic and contact differential graded algebras
    Ekholm, Tobias
    Oancea, Alexandru
    GEOMETRY & TOPOLOGY, 2017, 21 (04) : 2161 - 2230
  • [50] On a family of operators and their Lie algebras
    Sanders, JA
    Wang, JP
    JOURNAL OF LIE THEORY, 2002, 12 (02) : 503 - 514