SYMPLECTIC DIRAC OPERATORS FOR LIE ALGEBRAS AND GRADED HECKE ALGEBRAS

被引:0
|
作者
Ciubotaru, D. [1 ]
De Martino, M. [1 ]
Meyer, P. [1 ]
机构
[1] Univ Oxford, Math Inst, Oxford OX2 6GG, England
基金
英国工程与自然科学研究理事会;
关键词
REPRESENTATIONS;
D O I
10.1007/s00031-022-09762-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to define a pair of symplectic Dirac operators (D+, D-) in an algebraic setting motivated by the analogy with the algebraic orthogonal Dirac operators in representation theory. We work in the settings of DOUBLE-STRUCK CAPITAL Z/2-graded quadratic Lie algebras 𝔤� = 𝔨� + 𝔭� and of graded affine Hecke algebras ℍ. In these contexts, we show analogues of the Parthasarathy's formula for [D+, D-] and certain generalisations of the Casimir inequality.
引用
收藏
页码:1447 / 1475
页数:29
相关论文
共 50 条
  • [31] Construction of Symplectic Quadratic Lie Algebras from Poisson Algebras
    Benayadi, Said
    ALGEBRA, GEOMETRY AND MATHEMATICAL PHYSICS (AGMP), 2014, 85 : 111 - 122
  • [32] Graded representations of graded Lie algebras and generalized representations of Jordan algebras
    Kantor, I
    Shpiz, G
    Noncommutative Geometry and Representation Theory in Mathematical Physics, 2005, 391 : 167 - 174
  • [33] On the homology of graded Lie algebras
    Tirao, P
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2001, 156 (2-3) : 357 - 366
  • [34] Graded identities for Lie algebras
    Koshlukov, Plamen
    Krasilnikov, Alexei
    Silva, Diogo D. P.
    GROUPS, RINGS AND GROUP RINGS, 2009, 499 : 181 - 188
  • [35] Graded Lie algebras and applications
    Iachello, F
    LATIN-AMERICAN SCHOOL OF PHYSICS - XXXV ELAF: SUPERSYMMETRIES IN PHYSICS AND ITS APPLICATIONS, 2005, 744 : 85 - 104
  • [36] On differential graded Lie algebras
    Piontkovskii, DI
    RUSSIAN MATHEMATICAL SURVEYS, 2003, 58 (01) : 189 - 190
  • [37] A radical for graded Lie algebras
    Ceretto, D.
    Garcia, E.
    Gomez Lozano, M.
    ACTA MATHEMATICA HUNGARICA, 2012, 136 (1-2) : 16 - 29
  • [39] On the structure of graded Lie algebras
    Calderon Martin, Antonio J.
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (10)
  • [40] A Basis for Representations of Symplectic Lie Algebras
    A. I. Molev
    Communications in Mathematical Physics, 1999, 201 : 591 - 618