SYMPLECTIC DIRAC OPERATORS FOR LIE ALGEBRAS AND GRADED HECKE ALGEBRAS

被引:0
|
作者
Ciubotaru, D. [1 ]
De Martino, M. [1 ]
Meyer, P. [1 ]
机构
[1] Univ Oxford, Math Inst, Oxford OX2 6GG, England
基金
英国工程与自然科学研究理事会;
关键词
REPRESENTATIONS;
D O I
10.1007/s00031-022-09762-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to define a pair of symplectic Dirac operators (D+, D-) in an algebraic setting motivated by the analogy with the algebraic orthogonal Dirac operators in representation theory. We work in the settings of DOUBLE-STRUCK CAPITAL Z/2-graded quadratic Lie algebras 𝔤� = 𝔨� + 𝔭� and of graded affine Hecke algebras ℍ. In these contexts, we show analogues of the Parthasarathy's formula for [D+, D-] and certain generalisations of the Casimir inequality.
引用
收藏
页码:1447 / 1475
页数:29
相关论文
共 50 条
  • [21] Symplectic Leibniz algebras as a non-commutative version of symplectic Lie algebras
    Abid, Fatima-Ezzahrae
    Boucetta, Mohamed
    JOURNAL OF ALGEBRA, 2025, 673 : 1 - 35
  • [22] Dirac cohomology for symplectic reflection algebras
    Dan Ciubotaru
    Selecta Mathematica, 2016, 22 : 111 - 144
  • [23] Hopf-Hecke algebras, infinitesimal Cherednik algebras, and Dirac cohomology
    Flake, Johannes
    Sahi, Siddhartha
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2021, 17 (04) : 1549 - 1597
  • [24] Dirac cohomology for symplectic reflection algebras
    Ciubotaru, Dan
    SELECTA MATHEMATICA-NEW SERIES, 2016, 22 (01): : 111 - 144
  • [25] Lie Algebras Attached to Clifford Modules and Simple Graded Lie Algebras
    Furutani, Kenro
    Godoy Molina, Mauricio
    Markina, Irina
    Morimoto, Tohru
    Vasil'ev, Alexander
    JOURNAL OF LIE THEORY, 2018, 28 (03) : 843 - 864
  • [27] A view of symplectic Lie algebras from quadratic Poisson algebras
    Riano, Andres
    Reyes, Armando
    BOLETIN DE MATEMATICAS, 2019, 26 (01): : 1 - 30
  • [28] Symmetric Symplectic Commutative Associative Algebras and Related Lie Algebras
    Baklouti, Amir
    Benayadi, Said
    ALGEBRA COLLOQUIUM, 2011, 18 : 973 - 986
  • [29] GRADED LIE ALGEBRAS OF AN ALGEBRA
    NIJENHUIS, A
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1967, 70 (05): : 475 - +
  • [30] A radical for graded Lie algebras
    Daniel Ceretto
    Esther García
    Miguel Gómez Lozano
    Acta Mathematica Hungarica, 2012, 136 : 16 - 29