VECTOR-QUANTIZED LATENT FLOWS FOR MEDICAL IMAGE SYNTHESIS AND OUT-OF-DISTRIBUTION DETECTION

被引:0
|
作者
Khader, Firas [1 ]
Mueller-Franzes, Gustav [1 ]
Arasteh, Soroosh Tayebi [1 ]
Han, Tianyu [2 ]
Kather, Jakob Nikolas [3 ,4 ,5 ,6 ]
Stegmaier, Johannes [7 ]
Nebelung, Sven [1 ]
Truhn, Daniel [1 ]
机构
[1] Univ Hosp Aachen, Dept Diagnost & Intervent Radiol, Aachen, Germany
[2] Rhein Westfal TH Aachen, Phys Mol Imaging Syst, Expt Mol Imaging, Aachen, Germany
[3] Univ Leeds, Leeds Inst Med Res St Jamess, Pathol & Data Analyt, Leeds, W Yorkshire, England
[4] German Canc Res Ctr, German Canc Consortium DKTK, Heidelberg, Germany
[5] Univ Heidelberg Hosp, Natl Ctr Tumor Dis NCT, Med Oncol, Heidelberg, Germany
[6] Tech Univ Dresden, Med Fac Carl Gustav Carus, Else Kroener Fresenius Ctr Digital Hlth, Dresden, Germany
[7] Rhein Westfal TH Aachen, Inst Imaging & Comp Vis, Aachen, Germany
关键词
Out-of-Distribution Detection; Generative Model; Medical Support;
D O I
10.1109/ISBI53787.2023.10230460
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present an innovative method that allows for simultaneous out-of-distribution detection and image generation by encoding images in the latent space of a vector-quantized autoencoder and using normalizing flow models. The technique is demonstrated on a medical dataset of knee radiographs and can be used to relieve clinical radiologists of tedious tasks of quality control while simultaneously guiding radiologic technologists to improved and standardized image quality during image acquisition.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] LEARNING PRODUCT CODEBOOKS USING VECTOR-QUANTIZED AUTOENCODERS FOR IMAGE RETRIEVAL
    Wu, Hanwei
    Flierl, Markus
    2019 7TH IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (IEEE GLOBALSIP), 2019,
  • [22] Entropic Out-of-Distribution Detection
    Macedo, David
    Ren, Tsang Ing
    Zanchettin, Cleber
    Oliveira, Adriano L., I
    Ludermir, Teresa
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [23] Watermarking for Out-of-distribution Detection
    Wang, Qizhou
    Liu, Feng
    Zhang, Yonggang
    Zhang, Jing
    Gong, Chen
    Liu, Tongliang
    Han, Bo
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [24] Is Out-of-Distribution Detection Learnable?
    Fang, Zhen
    Li, Yixuan
    Lu, Jie
    Dong, Jiahua
    Han, Bo
    Liu, Feng
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [25] On the Learnability of Out-of-distribution Detection
    Fang, Zhen
    Li, Yixuan
    Liu, Feng
    Han, Bo
    Lu, Jie
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25
  • [26] SPEAKER IDENTIFICATION BASED ON FREQUENCY DISTRIBUTION OF VECTOR-QUANTIZED SPECTRA.
    Shirai, Katsuhiko
    Mano, Kazunori
    Ishige, Shunichi
    Systems and Computers in Japan, 1988, 19 (06): : 63 - 72
  • [27] Segmentation Consistency Training: Out-of-Distribution Generalization for Medical Image Segmentation
    Torpmann-Hagen, Birk
    Thambawita, Vajira
    Riegler, Michael A.
    Halvorsen, Pal
    Glette, Kyrre
    2022 IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA (ISM), 2022, : 42 - 49
  • [28] VQ-HPS: Human Pose and Shape Estimation in a Vector-Quantized Latent Space
    Fiche, Guenole
    Leglaive, Simon
    Alameda-Pineda, Xavier
    Agudo, Antonio
    Moreno-Noguer, Francesc
    COMPUTER VISION - ECCV 2024, PT LII, 2025, 15110 : 471 - 490
  • [29] Interpretable Latent Space for Meteorological Out-of-Distribution Detection via Weak Supervision
    Das, Suman
    Yuhas, Michael
    Koh, Rachel
    Easwaran, Arvind
    ACM TRANSACTIONS ON CYBER-PHYSICAL SYSTEMS, 2024, 8 (02) : 1 - 26
  • [30] Unsupervised 3D Out-of-Distribution Detection with Latent Diffusion Models
    Graham, Mark S.
    Pinaya, Walter Hugo Lopez
    Wright, Paul
    Tudosiu, Petru-Daniel
    Mah, Yee H.
    Teo, James T.
    Jager, H. Rolf
    Werring, David
    Nachev, Parashkev
    Ourselin, Sebastien
    Cardoso, M. Jorge
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT I, 2023, 14220 : 446 - 456