VECTOR-QUANTIZED LATENT FLOWS FOR MEDICAL IMAGE SYNTHESIS AND OUT-OF-DISTRIBUTION DETECTION

被引:0
|
作者
Khader, Firas [1 ]
Mueller-Franzes, Gustav [1 ]
Arasteh, Soroosh Tayebi [1 ]
Han, Tianyu [2 ]
Kather, Jakob Nikolas [3 ,4 ,5 ,6 ]
Stegmaier, Johannes [7 ]
Nebelung, Sven [1 ]
Truhn, Daniel [1 ]
机构
[1] Univ Hosp Aachen, Dept Diagnost & Intervent Radiol, Aachen, Germany
[2] Rhein Westfal TH Aachen, Phys Mol Imaging Syst, Expt Mol Imaging, Aachen, Germany
[3] Univ Leeds, Leeds Inst Med Res St Jamess, Pathol & Data Analyt, Leeds, W Yorkshire, England
[4] German Canc Res Ctr, German Canc Consortium DKTK, Heidelberg, Germany
[5] Univ Heidelberg Hosp, Natl Ctr Tumor Dis NCT, Med Oncol, Heidelberg, Germany
[6] Tech Univ Dresden, Med Fac Carl Gustav Carus, Else Kroener Fresenius Ctr Digital Hlth, Dresden, Germany
[7] Rhein Westfal TH Aachen, Inst Imaging & Comp Vis, Aachen, Germany
关键词
Out-of-Distribution Detection; Generative Model; Medical Support;
D O I
10.1109/ISBI53787.2023.10230460
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present an innovative method that allows for simultaneous out-of-distribution detection and image generation by encoding images in the latent space of a vector-quantized autoencoder and using normalizing flow models. The technique is demonstrated on a medical dataset of knee radiographs and can be used to relieve clinical radiologists of tedious tasks of quality control while simultaneously guiding radiologic technologists to improved and standardized image quality during image acquisition.
引用
收藏
页数:5
相关论文
共 50 条
  • [11] Adequate structuring of the latent space for easy classification and out-of-distribution detection
    Ossonce, Maxime
    Duhamel, Pierre
    Alberge, Florence
    32ND EUROPEAN SIGNAL PROCESSING CONFERENCE, EUSIPCO 2024, 2024, : 1776 - 1780
  • [12] MIM-OOD: Generative Masked Image Modelling for Out-of-Distribution Detection in Medical Images
    Marimont, Sergio Naval
    Siomos, Vasilis
    Tarroni, Giacomo
    DEEP GENERATIVE MODELS, DGM4MICCAI 2023, 2024, 14533 : 35 - 44
  • [13] Information Bottleneck-Based Feature Weighting for Enhanced Medical Image Out-of-Distribution Detection
    Schott, Brayden
    Klanecek, Zan
    Deatsch, Alison
    Santoro-Fernandes, Victor
    Francken, Thomas
    Perlman, Scott
    Jeraj, Robert
    UNCERTAINTY FOR SAFE UTILIZATION OF MACHINE LEARNING IN MEDICAL IMAGING, UNSURE 2024, 2025, 15167 : 128 - 137
  • [14] Benchmarking Image Classifiers for Physical Out-of-Distribution Examples Detection
    Ojaswee
    Agarwal, Akshay
    Ratha, Nalini
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS, ICCVW, 2023, : 4429 - 4437
  • [15] An Efficient Data Augmentation Network for Out-of-Distribution Image Detection
    Lin, Cheng-Hung
    Lin, Cheng-Shian
    Chou, Po-Yung
    Hsu, Chen-Chien
    IEEE ACCESS, 2021, 9 : 35313 - 35323
  • [16] On the Learnability of Out-of-distribution Detection
    Fang, Zhen
    Li, Yixuan
    Liu, Feng
    Han, Bo
    Lu, Jie
    Journal of Machine Learning Research, 2024, 25
  • [17] Normalizing Flows for Out-of-Distribution Detection: Application to Coronary Artery Segmentation
    Ciusdel, Costin Florian
    Itu, Lucian Mihai
    Cimen, Serkan
    Wels, Michael
    Schwemmer, Chris
    Fortner, Philipp
    Seitz, Sebastian
    Andre, Florian
    Buss, Sebastian Johannes
    Sharma, Puneet
    Rapaka, Saikiran
    APPLIED SCIENCES-BASEL, 2022, 12 (08):
  • [18] Codebook Transfer with Part-of-Speech for Vector-Quantized Image Modeling
    Zhang, Baoquan
    Wang, Huaibin
    Luo, Chuyao
    Li, Xutao
    Liang, Guotao
    Ye, Yunming
    Qi, Xiaochen
    He, Yao
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2024, 2024, : 7757 - 7766
  • [19] Attention Masking for Improved Near Out-of-Distribution Image Detection
    Sim, Minho
    Lee, Jongwhoa
    Choi, Ho-Jin
    2023 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING, BIGCOMP, 2023, : 195 - 202
  • [20] Leveraging Vector-Quantized Variational Autoencoder Inner Metrics for Anomaly Detection
    Gangloff, Hugo
    Pham, Minh-Tan
    Courtrai, Luc
    Lefevre, Sebastien
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 435 - 441