Unsupervised 3D Out-of-Distribution Detection with Latent Diffusion Models

被引:4
|
作者
Graham, Mark S. [1 ]
Pinaya, Walter Hugo Lopez [1 ]
Wright, Paul [1 ]
Tudosiu, Petru-Daniel [1 ]
Mah, Yee H. [1 ,2 ]
Teo, James T. [2 ,3 ]
Jager, H. Rolf [4 ]
Werring, David [5 ]
Nachev, Parashkev [4 ]
Ourselin, Sebastien [1 ]
Cardoso, M. Jorge [1 ]
机构
[1] Kings Coll London, Sch Biomed Engn & Imaging Sci, Dept Biomed Engn, London, England
[2] Kings Coll Hosp NHS Fdn Trust, Denmark Hill, London, Denmark
[3] Kings Coll London, Inst Psychiat Psychol & Neurosci, London, England
[4] UCL, Inst Neurol, London, England
[5] UCL, Ctr Stroke Res, Inst Neurol, Queen Sq, London, England
基金
英国工程与自然科学研究理事会; 英国惠康基金; “创新英国”项目;
关键词
Latent diffusion models; Out-of-distribution detection;
D O I
10.1007/978-3-031-43907-0_43
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Methods for out-of-distribution (OOD) detection that scale to 3D data are crucial components of any real-world clinical deep learning system. Classic denoising diffusion probabilistic models (DDPMs) have been recently proposed as a robust way to perform reconstruction-based OOD detection on 2D datasets, but do not trivially scale to 3D data. In this work, we propose to use Latent Diffusion Models (LDMs), which enable the scaling of DDPMs to high-resolution 3D medical data. We validate the proposed approach on near- and far-OOD datasets and compare it to a recently proposed, 3D-enabled approach using Latent Transformer Models (LTMs). Not only does the proposed LDM-based approach achieve statistically significant better performance, it also shows less sensitivity to the underlying latent representation, more favourable memory scaling, and produces better spatial anomaly maps. Code is available at https://github.com/marksgraham/ddpm-ood.
引用
收藏
页码:446 / 456
页数:11
相关论文
共 50 条
  • [1] Leveraging diffusion models for unsupervised out-of-distribution detection on image manifold
    Liu, Zhenzhen
    Zhou, Jin Peng
    Weinberger, Kilian Q.
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2024, 7
  • [2] Latent Transformer Models for out-of-distribution detection
    Graham, Mark S.
    Tudosiu, Petru-Daniel
    Wright, Paul
    Pinaya, Walter Hugo Lopez
    Teikari, Petteri
    Patel, Ashay
    U-King-Im, Jean-Marie
    Mah, Yee H.
    Teo, James T.
    Jager, Hans Rolf
    Werring, David
    Rees, Geraint
    Nachev, Parashkev
    Ourselin, Sebastien
    Cardoso, M. Jorge
    MEDICAL IMAGE ANALYSIS, 2023, 90
  • [3] Unsupervised evaluation for out-of-distribution detection
    Zhang, Yuhang
    Hu, Jiani
    Wen, Dongchao
    Deng, Weihong
    PATTERN RECOGNITION, 2025, 160
  • [4] Diffusion models for out-of-distribution detection in digital pathology
    Linmans, Jasper
    Raya, Gabriel
    van der Laak, Jeroen
    Litjens, Geert
    Medical Image Analysis, 2024, 93
  • [5] Diffusion models for out-of-distribution detection in digital pathology
    Linmans, Jasper
    Raya, Gabriel
    van der Laak, Jeroen
    Litjens, Geert
    MEDICAL IMAGE ANALYSIS, 2024, 93
  • [6] Redesigning Out-of-Distribution Detection on 3D Medical Images
    Vasiliuk, Anton
    Frolova, Daria
    Belyaev, Mikhail
    Shirokikh, Boris
    UNCERTAINTY FOR SAFE UTILIZATION OF MACHINE LEARNING IN MEDICAL IMAGING, UNSURE 2023, 2023, 14291 : 126 - 135
  • [7] SS3D: Unsupervised Out-of-Distribution Detection and Localization for Medical Volumes
    Doorenbos, Lars
    Sznitman, Raphael
    Marquez-Neila, Pablo
    BIOMEDICAL IMAGE REGISTRATION, DOMAIN GENERALISATION AND OUT-OF-DISTRIBUTION ANALYSIS, 2022, 13166 : 111 - 118
  • [8] Out-of-Distribution Detection for LiDAR-based 3D Object Detection
    Huang, Chengjie
    Van Duong Nguyen
    Abdelzad, Vahdat
    Mannes, Christopher Gus
    Rowe, Luke
    Therien, Benjamin
    Salay, Rick
    Czarnecki, Krzysztof
    2022 IEEE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2022, : 4265 - 4271
  • [9] Out-Of-Distribution Detection In Unsupervised Continual Learning
    He, Jiangpeng
    Zhu, Fengqing
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 3849 - 3854
  • [10] Limitations of Out-of-Distribution Detection in 3D Medical Image Segmentation
    Vasiliuk, Anton
    Frolova, Daria
    Belyaev, Mikhail
    Shirokikh, Boris
    JOURNAL OF IMAGING, 2023, 9 (09)