Unsupervised 3D Out-of-Distribution Detection with Latent Diffusion Models

被引:4
|
作者
Graham, Mark S. [1 ]
Pinaya, Walter Hugo Lopez [1 ]
Wright, Paul [1 ]
Tudosiu, Petru-Daniel [1 ]
Mah, Yee H. [1 ,2 ]
Teo, James T. [2 ,3 ]
Jager, H. Rolf [4 ]
Werring, David [5 ]
Nachev, Parashkev [4 ]
Ourselin, Sebastien [1 ]
Cardoso, M. Jorge [1 ]
机构
[1] Kings Coll London, Sch Biomed Engn & Imaging Sci, Dept Biomed Engn, London, England
[2] Kings Coll Hosp NHS Fdn Trust, Denmark Hill, London, Denmark
[3] Kings Coll London, Inst Psychiat Psychol & Neurosci, London, England
[4] UCL, Inst Neurol, London, England
[5] UCL, Ctr Stroke Res, Inst Neurol, Queen Sq, London, England
基金
英国工程与自然科学研究理事会; 英国惠康基金; “创新英国”项目;
关键词
Latent diffusion models; Out-of-distribution detection;
D O I
10.1007/978-3-031-43907-0_43
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Methods for out-of-distribution (OOD) detection that scale to 3D data are crucial components of any real-world clinical deep learning system. Classic denoising diffusion probabilistic models (DDPMs) have been recently proposed as a robust way to perform reconstruction-based OOD detection on 2D datasets, but do not trivially scale to 3D data. In this work, we propose to use Latent Diffusion Models (LDMs), which enable the scaling of DDPMs to high-resolution 3D medical data. We validate the proposed approach on near- and far-OOD datasets and compare it to a recently proposed, 3D-enabled approach using Latent Transformer Models (LTMs). Not only does the proposed LDM-based approach achieve statistically significant better performance, it also shows less sensitivity to the underlying latent representation, more favourable memory scaling, and produces better spatial anomaly maps. Code is available at https://github.com/marksgraham/ddpm-ood.
引用
收藏
页码:446 / 456
页数:11
相关论文
共 50 条
  • [21] Out-of-distribution Detection Learning with Unreliable Out-of-distribution Sources
    Zheng, Haotian
    Wang, Qizhou
    Fang, Zhen
    Xia, Xiaobo
    Liu, Feng
    Liu, Tongliang
    Han, Bo
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [22] Dual Conditioned Diffusion Models for Out-of-Distribution Detection: Application to Fetal Ultrasound Videos
    Mishra, Divyanshu
    Zhao, He
    Saha, Pramit
    Papageorghiou, Aris T.
    Noble, J. Alison
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT I, 2023, 14220 : 216 - 226
  • [23] Unsupervised out-of-distribution detection for safer robotically guided retinal microsurgery
    Jungo, Alain
    Doorenbos, Lars
    Da Col, Tommaso
    Beelen, Maarten
    Zinkernagel, Martin
    Marquez-Neila, Pablo
    Sznitman, Raphael
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2023, 18 (06) : 1085 - 1091
  • [24] Typicality Excels Likelihood for Unsupervised Out-of-Distribution Detection in Medical Imaging
    Abdi, Lemar
    Valiuddin, M. M. Amaan
    Viviers, Christiaan G. A.
    de With, Peter H. N.
    van der Sommen, Fons
    UNCERTAINTY FOR SAFE UTILIZATION OF MACHINE LEARNING IN MEDICAL IMAGING, UNSURE 2024, 2025, 15167 : 149 - 159
  • [25] Label-Assisted Memory Autoencoder for Unsupervised Out-of-Distribution Detection
    Zhang, Shuyi
    Pan, Chao
    Song, Liyan
    Wu, Xiaoyu
    Hu, Zheng
    Pei, Ke
    Tino, Peter
    Yao, Xin
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2021: RESEARCH TRACK, PT III, 2021, 12977 : 795 - 810
  • [26] Learning Non-linear Invariants for Unsupervised Out-of-Distribution Detection
    Doorenbos, Lars
    Sznitman, Raphael
    Marquez-Neth, Pablo
    COMPUTER VISION - ECCV 2024, PT LII, 2025, 15110 : 310 - 327
  • [27] Unsupervised out-of-distribution detection for safer robotically guided retinal microsurgery
    Alain Jungo
    Lars Doorenbos
    Tommaso Da Col
    Maarten Beelen
    Martin Zinkernagel
    Pablo Márquez-Neila
    Raphael Sznitman
    International Journal of Computer Assisted Radiology and Surgery, 2023, 18 : 1085 - 1091
  • [28] Understanding the Generalization of Pretrained Diffusion Models on Out-of-Distribution Data
    Ramachandran, Sai Niranjan
    Mukhopadhyay, Rudrabha
    Agarwal, Madhav
    Jawahar, C. V.
    Namboodiri, Vinay
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 13, 2024, : 14767 - 14775
  • [29] Adequate structuring of the latent space for easy classification and out-of-distribution detection
    Ossonce, Maxime
    Duhamel, Pierre
    Alberge, Florence
    32ND EUROPEAN SIGNAL PROCESSING CONFERENCE, EUSIPCO 2024, 2024, : 1776 - 1780
  • [30] On the Learnability of Out-of-distribution Detection
    Fang, Zhen
    Li, Yixuan
    Liu, Feng
    Han, Bo
    Lu, Jie
    Journal of Machine Learning Research, 2024, 25