Mutually Orthogonal Latin Squares as Group Transversals

被引:0
|
作者
Pradhan, Rohitesh [1 ]
Jain, Vivek Kumar [1 ]
机构
[1] Cent Univ South Bihar, Dept Math, Gaya, India
来源
DISCRETE MATHEMATICS AND APPLICATIONS | 2023年 / 33卷 / 02期
关键词
Latin Square; Mutually Orthogonal Latin Square; Frobenius group; Transversals; CONSTRUCTION;
D O I
10.1515/dma-2023-0010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we give a method to determine a complete set of mutually orthogonal Latin squares of order m, where m is an odd prime or power of a prime, as a group transversal of a Frobenius group.
引用
收藏
页码:99 / 103
页数:5
相关论文
共 50 条
  • [41] Further Results on Mutually Nearly Orthogonal Latin Squares
    Ke-jun CHEN
    Yong ZHANG
    Guang-zhou CHEN
    Wen LI
    Acta Mathematicae Applicatae Sinica, 2016, 32 (01) : 209 - 220
  • [42] Further Results on Mutually Nearly Orthogonal Latin Squares
    Chen, Ke-jun
    Zhang, Yong
    Chen, Guang-zhou
    Li, Wen
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2016, 32 (01): : 209 - 220
  • [43] On the maximality of a set of mutually orthogonal Sudoku Latin Squares
    D'haeseleer, Jozefien
    Metsch, Klaus
    Storme, Leo
    Van de Voorde, Geertrui
    DESIGNS CODES AND CRYPTOGRAPHY, 2017, 84 (1-2) : 143 - 152
  • [44] EXPERIMENTAL DESIGNS AND COMBINATORIAL SYSTEMS ASSOCIATED WITH LATIN SQUARES AND SETS OF MUTUALLY ORTHOGONAL LATIN SQUARES
    HEDAYAT, A
    SHRIKHANDE, SS
    SANKHYA-THE INDIAN JOURNAL OF STATISTICS SERIES A, 1971, 33 (DEC): : 423 - 432
  • [45] QUADRATIC PERMUTATIONS, COMPLETE MAPPINGS AND MUTUALLY ORTHOGONAL LATIN SQUARES
    Samardjiska, Simona
    Gligoroski, Danilo
    MATHEMATICA SLOVACA, 2017, 67 (05) : 1129 - 1146
  • [46] On the connection between mutually unbiased bases and orthogonal Latin squares
    Paterek, T.
    Pawlowski, M.
    Grassl, M.
    Brukner, C.
    PHYSICA SCRIPTA, 2010, T140
  • [47] Some New Maximal Sets of Mutually Orthogonal Latin Squares
    P. Govaerts
    D. Jungnickel
    L. Storme
    J. A. Thas
    Designs, Codes and Cryptography, 2003, 29 : 141 - 147
  • [48] 3 MUTUALLY ORTHOGONAL LATIN SQUARES OF ORDER-14
    TODOROV, DT
    ARS COMBINATORIA, 1985, 20 : 45 - 47
  • [49] On the Spectrum of Mutually r-orthogonal Idempotent Latin Squares
    Xu, Yun-qing
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2015, 31 (03): : 813 - 822
  • [50] Three mutually orthogonal idempotent Latin squares of order 18
    Zhang, XF
    Zhang, HF
    ARS COMBINATORIA, 1997, 45 : 257 - 261