Mutually Orthogonal Latin Squares as Group Transversals

被引:0
|
作者
Pradhan, Rohitesh [1 ]
Jain, Vivek Kumar [1 ]
机构
[1] Cent Univ South Bihar, Dept Math, Gaya, India
来源
DISCRETE MATHEMATICS AND APPLICATIONS | 2023年 / 33卷 / 02期
关键词
Latin Square; Mutually Orthogonal Latin Square; Frobenius group; Transversals; CONSTRUCTION;
D O I
10.1515/dma-2023-0010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we give a method to determine a complete set of mutually orthogonal Latin squares of order m, where m is an odd prime or power of a prime, as a group transversal of a Frobenius group.
引用
收藏
页码:99 / 103
页数:5
相关论文
共 50 条
  • [21] Construction of Mutually Unbiased Bases Using Mutually Orthogonal Latin Squares
    Yi-yang Song
    Gui-jun Zhang
    Ling-shan Xu
    Yuan-hong Tao
    International Journal of Theoretical Physics, 2020, 59 : 1777 - 1787
  • [22] Construction of Mutually Unbiased Bases Using Mutually Orthogonal Latin Squares
    Song, Yi-yang
    Zhang, Gui-jun
    Xu, Ling-shan
    Tao, Yuan-hong
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2020, 59 (06) : 1777 - 1787
  • [23] ON TRANSVERSALS IN LATIN SQUARES
    BALASUBRAMANIAN, K
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1990, 131 : 125 - 129
  • [24] Latin squares with no transversals
    Cavenagh, Nicholas J.
    Wanless, Ian M.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (02):
  • [25] Further results on mutually nearly orthogonal Latin squares
    Ke-jun Chen
    Yong Zhang
    Guang-zhou Chen
    Wen Li
    Acta Mathematicae Applicatae Sinica, English Series, 2016, 32 : 209 - 220
  • [26] Mutually nearly orthogonal Latin squares of order 6
    Pasles, EB
    Raghavarao, D
    UTILITAS MATHEMATICA, 2004, 65 : 65 - 72
  • [27] SETS OF MUTUALLY ORTHOGONAL LATIN SQUARES WITH LIKE SUBSQUARES
    ROBERTS, CE
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1992, 61 (01) : 50 - 63
  • [28] Mutually orthogonal latin squares based on cellular automata
    Mariot, Luca
    Gadouleau, Maximilien
    Formenti, Enrico
    Leporati, Alberto
    DESIGNS CODES AND CRYPTOGRAPHY, 2020, 88 (02) : 391 - 411
  • [29] MAXIMAL SETS OF MUTUALLY ORTHOGONAL IDEMPOTENT LATIN SQUARES
    MENDELSOHN, NS
    CANADIAN MATHEMATICAL BULLETIN, 1971, 14 (03): : 449 - +
  • [30] 4 MUTUALLY ORTHOGONAL LATIN SQUARES OF ORDER 20
    TODOROV, DT
    ARS COMBINATORIA, 1989, 27 : 63 - 65