Mutually Orthogonal Latin Squares as Group Transversals

被引:0
|
作者
Pradhan, Rohitesh [1 ]
Jain, Vivek Kumar [1 ]
机构
[1] Cent Univ South Bihar, Dept Math, Gaya, India
来源
DISCRETE MATHEMATICS AND APPLICATIONS | 2023年 / 33卷 / 02期
关键词
Latin Square; Mutually Orthogonal Latin Square; Frobenius group; Transversals; CONSTRUCTION;
D O I
10.1515/dma-2023-0010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we give a method to determine a complete set of mutually orthogonal Latin squares of order m, where m is an odd prime or power of a prime, as a group transversal of a Frobenius group.
引用
收藏
页码:99 / 103
页数:5
相关论文
共 50 条
  • [31] Mutually orthogonal latin squares based on cellular automata
    Luca Mariot
    Maximilien Gadouleau
    Enrico Formenti
    Alberto Leporati
    Designs, Codes and Cryptography, 2020, 88 : 391 - 411
  • [32] The enumeration of cyclic mutually nearly orthogonal Latin squares
    Demirkale, Fatih
    Donovan, Diane M.
    Kokkala, Janne I.
    Marbach, Trent G.
    JOURNAL OF COMBINATORIAL DESIGNS, 2019, 27 (05) : 265 - 276
  • [33] Six mutually orthogonal Latin squares of order 48
    Wojtas, M
    JOURNAL OF COMBINATORIAL DESIGNS, 1997, 5 (06) : 463 - 466
  • [34] On the maximality of a set of mutually orthogonal Sudoku Latin Squares
    Jozefien D’haeseleer
    Klaus Metsch
    Leo Storme
    Geertrui Van de Voorde
    Designs, Codes and Cryptography, 2017, 84 : 143 - 152
  • [35] Mutually orthogonal latin squares: a brief survey of constructions
    Colbourn, CJ
    Dinitz, JH
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2001, 95 (1-2) : 9 - 48
  • [36] Three new constructions of mutually orthogonal Latin squares
    Wojtas, M
    JOURNAL OF COMBINATORIAL DESIGNS, 2000, 8 (03) : 218 - 220
  • [37] Concerning seven and eight Mutually Orthogonal Latin Squares
    Abel, RJR
    Colbourn, CJ
    Wojtas, M
    JOURNAL OF COMBINATORIAL DESIGNS, 2004, 12 (02) : 123 - 131
  • [38] Four Mutually Orthogonal Latin Squares of Order 14
    Todorov, D. T.
    JOURNAL OF COMBINATORIAL DESIGNS, 2012, 20 (08) : 363 - 367
  • [39] Five mutually orthogonal Latin squares of order 35
    Wojtas, M
    JOURNAL OF COMBINATORIAL DESIGNS, 1996, 4 (02) : 153 - 154
  • [40] INFINITE LATIN SQUARES CONTAINING NESTED SETS OF MUTUALLY ORTHOGONAL FINITE LATIN SQUARES
    BRAWLEY, JV
    MULLEN, GL
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1991, 39 (1-2): : 135 - 141