Intensity-tunable achromatic cascade liquid crystal Pancharatnam-Berry lens

被引:3
|
作者
Mo, Zhichang [1 ,2 ,3 ]
Zhao, Yuanan [1 ,2 ,3 ]
Wang, Jianguo [1 ,2 ,3 ]
Liu, Xiaofeng [1 ,2 ,3 ]
Cheng, Changjie [4 ]
Chen, Yi [1 ]
Zhu, Xiangyu [1 ]
Zhao, Yadi [1 ,2 ,3 ]
Wang, Kun [1 ,5 ]
Ou, Shaozhong [1 ,5 ]
Zhang, Zhouhao [1 ,6 ]
Cao, Zhaoliang [7 ]
Cao, Qing [4 ]
Shao, Jianda [1 ,2 ,3 ,8 ]
机构
[1] Shanghai Inst Opt & Fine Mech, Lab Thin film Opt, Shanghai 201800, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Key Lab Mat High Power Laser, Shanghai 201800, Peoples R China
[4] Shanghai Univ, Coll Sci, Dept Phys, Shanghai 201800, Peoples R China
[5] Univ Shanghai Sci & Technol, Sch Opt Elect & Comp Engn, Shanghai 200093, Peoples R China
[6] Henan Normal Univ, Sch Phys, Henan Key Lab Infrared Mat & Spectrum Measures & A, Xinxiang 453007, Peoples R China
[7] Suzhou Univ Sci & Technol, Sch Phys Sci & Technol, Jiangsu Key Lab Micro & Nano Heat Fluid Flow Techn, Suzhou 215009, Peoples R China
[8] Univ Chinese Acad Sci, Hangzhou Inst Adv Study, Hangzhou 310024, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
METALENS; FABRICATION;
D O I
10.1038/s42005-024-01601-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the current solution for multiwavelength achromatic flat lenses, a one-to-one correspondence exists between the number of writing phase distributions and the number of achromatic wavelengths. Breaking this correspondence requires a complex phase design and parameter optimization. Here, we show that a dual-layer cascade liquid crystal Pancharatnam-Berry lens (CLCPBL) with two writing phase distributions and a specific coupled phase distribution between the layers can achieve three wavelength achromaticity without any parameter optimization process. Similarly, in a three-layer cascade, the number of achromatic wavelengths increases to seven through the permutations of the layers, with adjustable amplitude factors. We fabricate a three-layer CLCPBL with the design wavelengths of 396.8 nm, 1064 nm, and 1550 nm, which theoretically allows the light at 632.8, 532.8, 3383 and 450 nm to form a common focus, and test such structure. Our CLCPBL enables a wider range of applications than conventional achromatic flat lenses. Metalenses are lightweight and compact alternative to achromatic lens assemblies, but they usually fulfill the focusing requirements for a single wavelength. The authors design and fabricate a cascade liquid crystal Pancharatnam-Berry lens that enables a seven-wavelength achromatic focusing in a broad range of frequencies.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Controllable oscillated spin Hall effect of Bessel beam realized by liquid crystal Pancharatnam-Berry phase elements
    Sheng Liu
    Shuxia Qi
    Yanke Li
    Bingyan Wei
    Peng Li
    Jianlin Zhao
    Light: Science & Applications, 11
  • [42] Controllable oscillated spin Hall effect of Bessel beam realized by liquid crystal Pancharatnam-Berry phase elements
    Liu, Sheng
    Qi, Shuxia
    Li, Yanke
    Wei, Bingyan
    Li, Peng
    Zhao, Jianlin
    LIGHT-SCIENCE & APPLICATIONS, 2022, 11 (01)
  • [43] Phase smoothing and polarisation-phase synchronous smoothing based on liquid crystal Pancharatnam-Berry phase devices
    Zhou, Yaqin
    Fu, Wenxing
    Zheng, Tianran
    Lin, Tiegang
    Liu, Lanqin
    Sun, Xibo
    Geng, Yuanchao
    Zhang, Ying
    Fan, Fan
    Wen, Shuangchun
    LIQUID CRYSTALS, 2021, 48 (01) : 150 - 156
  • [44] Generalization of Pancharatnam-Berry phase interference theory for fabricating phase-integrated liquid crystal optical elements
    Fu, Wenxing
    Zhou, Yaqin
    Yuan, Yide
    Lin, Tiegang
    Zhou, Yingjie
    Huang, Huihui
    Fan, Fan
    Wen, Shuangchun
    LIQUID CRYSTALS, 2020, 47 (03) : 369 - 376
  • [45] Tunable wavelength-decoding switch for Pancharatnam-Berry phase transition base on vanadium dioxide
    Yin, Huaiyuan
    PHYSICS LETTERS A, 2025, 537
  • [46] Holographic augmented reality near-eye display using Pancharatnam-Berry phase lens
    Nam, Seung-Woo
    Moon, Seokil
    Lee, Chang-Kun
    Lee, Hong-Seok
    Lee, Byoungho
    2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS PACIFIC RIM (CLEO-PR), 2020,
  • [47] Enhanced optical edge detection based on a Pancharatnam-Berry flat lens with a large focal length
    Li, Ting
    Yang, Yang
    Liu, Xinyang
    Wu, Yan
    Zhou, Yuan
    Huang, Sijia
    Li, Xiaochun
    Huang, Huihui
    OPTICS LETTERS, 2020, 45 (13) : 3681 - 3684
  • [48] Tunable achromatic liquid crystal waveplates
    Abuleil, Marwan Jamal
    Abdulhalim, Ibrahim
    OPTICS LETTERS, 2014, 39 (19) : 5487 - 5490
  • [49] Low f-Number Diffraction-Limited Pancharatnam-Berry Microlenses Enabled by Plasmonic Photopatterning of Liquid Crystal Polymers
    Jiang, Miao
    Guo, Yubing
    Yu, Hao
    Zhou, Ziyuan
    Turiv, Taras
    Lavrentovich, Oleg D.
    Wei, Qi-Huo
    ADVANCED MATERIALS, 2019, 31 (18)
  • [50] Reconfigurable metasurface lens based on graphene split ring resonators using Pancharatnam-Berry phase manipulation
    Hamzavi-Zarghani, Zahra
    Yahaghi, Alireza
    Matekovits, Ladislau
    JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2019, 33 (05) : 572 - 583