Intensity-tunable achromatic cascade liquid crystal Pancharatnam-Berry lens

被引:3
|
作者
Mo, Zhichang [1 ,2 ,3 ]
Zhao, Yuanan [1 ,2 ,3 ]
Wang, Jianguo [1 ,2 ,3 ]
Liu, Xiaofeng [1 ,2 ,3 ]
Cheng, Changjie [4 ]
Chen, Yi [1 ]
Zhu, Xiangyu [1 ]
Zhao, Yadi [1 ,2 ,3 ]
Wang, Kun [1 ,5 ]
Ou, Shaozhong [1 ,5 ]
Zhang, Zhouhao [1 ,6 ]
Cao, Zhaoliang [7 ]
Cao, Qing [4 ]
Shao, Jianda [1 ,2 ,3 ,8 ]
机构
[1] Shanghai Inst Opt & Fine Mech, Lab Thin film Opt, Shanghai 201800, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Key Lab Mat High Power Laser, Shanghai 201800, Peoples R China
[4] Shanghai Univ, Coll Sci, Dept Phys, Shanghai 201800, Peoples R China
[5] Univ Shanghai Sci & Technol, Sch Opt Elect & Comp Engn, Shanghai 200093, Peoples R China
[6] Henan Normal Univ, Sch Phys, Henan Key Lab Infrared Mat & Spectrum Measures & A, Xinxiang 453007, Peoples R China
[7] Suzhou Univ Sci & Technol, Sch Phys Sci & Technol, Jiangsu Key Lab Micro & Nano Heat Fluid Flow Techn, Suzhou 215009, Peoples R China
[8] Univ Chinese Acad Sci, Hangzhou Inst Adv Study, Hangzhou 310024, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
METALENS; FABRICATION;
D O I
10.1038/s42005-024-01601-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the current solution for multiwavelength achromatic flat lenses, a one-to-one correspondence exists between the number of writing phase distributions and the number of achromatic wavelengths. Breaking this correspondence requires a complex phase design and parameter optimization. Here, we show that a dual-layer cascade liquid crystal Pancharatnam-Berry lens (CLCPBL) with two writing phase distributions and a specific coupled phase distribution between the layers can achieve three wavelength achromaticity without any parameter optimization process. Similarly, in a three-layer cascade, the number of achromatic wavelengths increases to seven through the permutations of the layers, with adjustable amplitude factors. We fabricate a three-layer CLCPBL with the design wavelengths of 396.8 nm, 1064 nm, and 1550 nm, which theoretically allows the light at 632.8, 532.8, 3383 and 450 nm to form a common focus, and test such structure. Our CLCPBL enables a wider range of applications than conventional achromatic flat lenses. Metalenses are lightweight and compact alternative to achromatic lens assemblies, but they usually fulfill the focusing requirements for a single wavelength. The authors design and fabricate a cascade liquid crystal Pancharatnam-Berry lens that enables a seven-wavelength achromatic focusing in a broad range of frequencies.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Liquid Crystal Pancharatnam-Berry Micro-Optical Elements for Laser Beam Shaping
    Jiang, Miao
    Yu, Hao
    Feng, Xiayu
    Guo, Yubing
    Chaganava, Irakli
    Turiv, Taras
    Lavrentovich, Oleg D.
    Wei, Qi-Huo
    ADVANCED OPTICAL MATERIALS, 2018, 6 (23):
  • [22] Janus vortex beams realized via liquid crystal Pancharatnam-Berry phase elements
    Wei, Bing-Yan
    Zhang, Yuan
    Xiong, Haozhe
    Liu, Sheng
    Li, Peng
    Wen, Dandan
    Zhao, Jianlin
    ADVANCED PHOTONICS NEXUS, 2022, 1 (02):
  • [23] Creation of topological vortices using Pancharatnam-Berry phase liquid crystal holographic plates
    郭旭岳
    钟进展
    李鹏
    魏冰妍
    刘圣
    赵建林
    Chinese Physics B, 2020, 29 (04) : 102 - 106
  • [24] Compact Augmented Reality Combiner Using Pancharatnam-Berry Phase Lens
    Moon, Seokil
    Nam, Seung-Woo
    Jeong, Youngmo
    Lee, Chang-Kun
    Lee, Hong-Seok
    Lee, Byoungho
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2020, 32 (05) : 235 - 238
  • [25] Polarization-independent metasurface lens employing the Pancharatnam-Berry phase
    Lin, Dianmin
    Holsteen, Aaron L.
    Maguid, Elhanan
    Fan, Pengyu
    Kik, Pieter G.
    Hasman, Erez
    Brongersma, Mark L.
    OPTICS EXPRESS, 2018, 26 (19): : 24835 - 24842
  • [26] Colorful multi-plane augmented reality display with dynamically tunable reflective Pancharatnam-Berry phase lens
    Yan, Xudong
    Zhu, Jiaxin
    Liu, Mingxuan
    Liu, Yanjun
    Luo, Dan
    OPTICS EXPRESS, 2024, 32 (06): : 9161 - 9170
  • [27] SRGAN Algorithm-Assisted Electrically Controllable Zoom System Based on Pancharatnam-Berry Liquid Crystal Lens for VR/AR Display
    Tian, Li-Lan
    Hu, Wei
    Zhou, Hai-Zhen
    Yu, Le
    Li, Lin
    Li, Lei
    ACS PHOTONICS, 2024, 11 (07): : 2787 - 2796
  • [28] Realization of Tunable Photonic Spin Hall Effect by Tailoring the Pancharatnam-Berry Phase
    Ling, Xiaohui
    Zhou, Xinxing
    Shu, Weixing
    Luo, Hailu
    Wen, Shuangchun
    SCIENTIFIC REPORTS, 2014, 4
  • [29] Tunable Pancharatnam-Berry metasurface for dynamical and high-efficiency anomalous reflection
    Xu, He-Xiu
    Wang, Guang-Ming
    Cai, Tong
    Xiao, Jun
    Zhuang, Ya-Qiang
    OPTICS EXPRESS, 2016, 24 (24): : 27836 - 27848
  • [30] Realization of Tunable Photonic Spin Hall Effect by Tailoring the Pancharatnam-Berry Phase
    Xiaohui Ling
    Xinxing Zhou
    Weixing Shu
    Hailu Luo
    Shuangchun Wen
    Scientific Reports, 4