Intensity-tunable achromatic cascade liquid crystal Pancharatnam-Berry lens

被引:3
|
作者
Mo, Zhichang [1 ,2 ,3 ]
Zhao, Yuanan [1 ,2 ,3 ]
Wang, Jianguo [1 ,2 ,3 ]
Liu, Xiaofeng [1 ,2 ,3 ]
Cheng, Changjie [4 ]
Chen, Yi [1 ]
Zhu, Xiangyu [1 ]
Zhao, Yadi [1 ,2 ,3 ]
Wang, Kun [1 ,5 ]
Ou, Shaozhong [1 ,5 ]
Zhang, Zhouhao [1 ,6 ]
Cao, Zhaoliang [7 ]
Cao, Qing [4 ]
Shao, Jianda [1 ,2 ,3 ,8 ]
机构
[1] Shanghai Inst Opt & Fine Mech, Lab Thin film Opt, Shanghai 201800, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Key Lab Mat High Power Laser, Shanghai 201800, Peoples R China
[4] Shanghai Univ, Coll Sci, Dept Phys, Shanghai 201800, Peoples R China
[5] Univ Shanghai Sci & Technol, Sch Opt Elect & Comp Engn, Shanghai 200093, Peoples R China
[6] Henan Normal Univ, Sch Phys, Henan Key Lab Infrared Mat & Spectrum Measures & A, Xinxiang 453007, Peoples R China
[7] Suzhou Univ Sci & Technol, Sch Phys Sci & Technol, Jiangsu Key Lab Micro & Nano Heat Fluid Flow Techn, Suzhou 215009, Peoples R China
[8] Univ Chinese Acad Sci, Hangzhou Inst Adv Study, Hangzhou 310024, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
METALENS; FABRICATION;
D O I
10.1038/s42005-024-01601-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the current solution for multiwavelength achromatic flat lenses, a one-to-one correspondence exists between the number of writing phase distributions and the number of achromatic wavelengths. Breaking this correspondence requires a complex phase design and parameter optimization. Here, we show that a dual-layer cascade liquid crystal Pancharatnam-Berry lens (CLCPBL) with two writing phase distributions and a specific coupled phase distribution between the layers can achieve three wavelength achromaticity without any parameter optimization process. Similarly, in a three-layer cascade, the number of achromatic wavelengths increases to seven through the permutations of the layers, with adjustable amplitude factors. We fabricate a three-layer CLCPBL with the design wavelengths of 396.8 nm, 1064 nm, and 1550 nm, which theoretically allows the light at 632.8, 532.8, 3383 and 450 nm to form a common focus, and test such structure. Our CLCPBL enables a wider range of applications than conventional achromatic flat lenses. Metalenses are lightweight and compact alternative to achromatic lens assemblies, but they usually fulfill the focusing requirements for a single wavelength. The authors design and fabricate a cascade liquid crystal Pancharatnam-Berry lens that enables a seven-wavelength achromatic focusing in a broad range of frequencies.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] A tunable terahertz chiral metasurface with circular dichroism and Pancharatnam-Berry phase characteristics
    Yang, Shuang
    Wang, Guan
    Zhang, Xin
    Liu, Jia
    Li, Meichen
    Jia, Yang
    Meng, Hongyan
    Gao, Yachen
    OPTICS COMMUNICATIONS, 2024, 569
  • [32] Design and Realization of a Compact Efficient Beam Combiner, Based on Liquid Crystal Pancharatnam-Berry Phase Gratings
    Gao, Boxuan
    Beeckman, Jeroen
    Neyts, Kristiaan
    CRYSTALS, 2021, 11 (02): : 1 - 7
  • [33] Active terahertz beam manipulation with photonic spin conversion based on a liquid crystal Pancharatnam-Berry metadevice
    Zhao, Hui-Jun
    Fan, Fei
    Ji, Yun-Yun
    Jiang, Song-Lin
    Tan, Zhi-Yu
    Chang, Sheng-Jiang
    PHOTONICS RESEARCH, 2022, 10 (11) : 2658 - 2666
  • [34] A high-efficiency dual-wavelength achromatic metalens based on Pancharatnam-Berry phase manipulation
    Chen, Junyi
    Zhang, Fanwei
    Li, Qiang
    Wu, Jiepeng
    Wu, Lijun
    OPTICS EXPRESS, 2018, 26 (26): : 34919 - 34927
  • [35] Intensity-tunable terahertz bandpass filters based on liquid crystal integrated metamaterials
    Xu, Shi-Tong
    Fan, Fei
    Wang, Ying-Hua
    Yang, Tengzhou
    Cao, Hong-Zhong
    Chang, Sheng-Jiang
    APPLIED OPTICS, 2021, 60 (30) : 9530 - 9534
  • [36] Polarization dependent focusing lens by use of quantized Pancharatnam-Berry phase diffractive optics
    Hasman, E
    Kleiner, V
    Biener, G
    Niv, A
    APPLIED PHYSICS LETTERS, 2003, 82 (03) : 328 - 330
  • [37] Optical computation of Laplace operator using Pancharatnam-Berry lens of large focal length
    Tu, Yingnan
    Liang, Yutian
    Zhu, Xiangyang
    Wu, Hao
    Liu, Zhengliang
    Liu, Tong
    Ren, Yuan
    OPTICS COMMUNICATIONS, 2023, 549
  • [38] Reconfigurable Generation and Spin Manipulation of Structured Beams Based on Cascaded Liquid Crystal Pancharatnam-Berry Phase Elements
    Tian, Jibo
    Min, Li
    Chen, Yu
    Jing, Le
    Yang, Peng
    Zeng, Kang
    Zeng, Linzhou
    Ke, Yougang
    Zhou, Xinxing
    LASER & PHOTONICS REVIEWS, 2025, 19 (05)
  • [39] Flat polarization-controlled cylindrical lens based on the Pancharatnam-Berry geometric phase
    Piccirillo, Bruno
    Picardi, Michela Florinda
    Marrucci, Lorenzo
    Santamato, Enrico
    EUROPEAN JOURNAL OF PHYSICS, 2017, 38 (03)
  • [40] Fast-response Pancharatnam-Berry phase optical elements based on polymer-stabilized liquid crystal
    Li, Sida
    Liu, Yueda
    Li, Yan
    Liu, Shuxin
    Chen, Shuyi
    Su, Yikai
    OPTICS EXPRESS, 2019, 27 (16) : 22522 - 22531