Intensity-tunable achromatic cascade liquid crystal Pancharatnam-Berry lens

被引:3
|
作者
Mo, Zhichang [1 ,2 ,3 ]
Zhao, Yuanan [1 ,2 ,3 ]
Wang, Jianguo [1 ,2 ,3 ]
Liu, Xiaofeng [1 ,2 ,3 ]
Cheng, Changjie [4 ]
Chen, Yi [1 ]
Zhu, Xiangyu [1 ]
Zhao, Yadi [1 ,2 ,3 ]
Wang, Kun [1 ,5 ]
Ou, Shaozhong [1 ,5 ]
Zhang, Zhouhao [1 ,6 ]
Cao, Zhaoliang [7 ]
Cao, Qing [4 ]
Shao, Jianda [1 ,2 ,3 ,8 ]
机构
[1] Shanghai Inst Opt & Fine Mech, Lab Thin film Opt, Shanghai 201800, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Key Lab Mat High Power Laser, Shanghai 201800, Peoples R China
[4] Shanghai Univ, Coll Sci, Dept Phys, Shanghai 201800, Peoples R China
[5] Univ Shanghai Sci & Technol, Sch Opt Elect & Comp Engn, Shanghai 200093, Peoples R China
[6] Henan Normal Univ, Sch Phys, Henan Key Lab Infrared Mat & Spectrum Measures & A, Xinxiang 453007, Peoples R China
[7] Suzhou Univ Sci & Technol, Sch Phys Sci & Technol, Jiangsu Key Lab Micro & Nano Heat Fluid Flow Techn, Suzhou 215009, Peoples R China
[8] Univ Chinese Acad Sci, Hangzhou Inst Adv Study, Hangzhou 310024, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
METALENS; FABRICATION;
D O I
10.1038/s42005-024-01601-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the current solution for multiwavelength achromatic flat lenses, a one-to-one correspondence exists between the number of writing phase distributions and the number of achromatic wavelengths. Breaking this correspondence requires a complex phase design and parameter optimization. Here, we show that a dual-layer cascade liquid crystal Pancharatnam-Berry lens (CLCPBL) with two writing phase distributions and a specific coupled phase distribution between the layers can achieve three wavelength achromaticity without any parameter optimization process. Similarly, in a three-layer cascade, the number of achromatic wavelengths increases to seven through the permutations of the layers, with adjustable amplitude factors. We fabricate a three-layer CLCPBL with the design wavelengths of 396.8 nm, 1064 nm, and 1550 nm, which theoretically allows the light at 632.8, 532.8, 3383 and 450 nm to form a common focus, and test such structure. Our CLCPBL enables a wider range of applications than conventional achromatic flat lenses. Metalenses are lightweight and compact alternative to achromatic lens assemblies, but they usually fulfill the focusing requirements for a single wavelength. The authors design and fabricate a cascade liquid crystal Pancharatnam-Berry lens that enables a seven-wavelength achromatic focusing in a broad range of frequencies.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Intensity-tunable achromatic cascade liquid crystal Pancharatnam-Berry lens
    Zhichang Mo
    Yuanan Zhao
    Jianguo Wang
    Xiaofeng Liu
    Changjie Cheng
    Yi Chen
    Xiangyu Zhu
    Yadi Zhao
    Kun Wang
    Shaozhong Ou
    Zhouhao Zhang
    Zhaoliang Cao
    Qing Cao
    Jianda Shao
    Communications Physics, 7
  • [2] Fast switching ferroelectric liquid crystal Pancharatnam-Berry lens
    Ma, Y.
    Tam, Alwin M. W.
    Gan, X. T.
    Shi, L. Y.
    Srivastava, A. K.
    Chigrinov, V. G.
    Kwok, H. S.
    Zhao, J. L.
    OPTICS EXPRESS, 2019, 27 (07) : 10079 - 10086
  • [3] Planar Alvarez tunable lens based on polymetric liquid crystal Pancharatnam-Berry optical elements
    Chen, S. H. U. Y., I
    Lin, J. U. N. H. A. O.
    He, Z. I. Q. I. A. N.
    LI, Y. A. N.
    Su, Y. I. K. A. I.
    Wu, Shin-tson
    OPTICS EXPRESS, 2022, 30 (19): : 34655 - 34664
  • [4] Ferroelectric Liquid Crystal Compound Lens Based on Pancharatnam-Berry Phase
    Ma, Ying
    Yin, Mingkui
    Shan, Yuhang
    Chigrinov, Vladimir G.
    Kwok, Hoi-Sing
    Zhao, Jianlin
    CRYSTALS, 2022, 12 (02)
  • [5] Liquid crystal Pancharatnam-Berry phase lens with spatially separated focuses
    Zhou, Yaqin
    Yin, Yue
    Yuan, Yide
    Lin, Tiegang
    Huang, Huihui
    Yao, Lishuang
    Wang, Xiaoqian
    Tam, Alwin M. W.
    Fan, Fan
    Wen, Shuangchun
    LIQUID CRYSTALS, 2019, 46 (07) : 995 - 1000
  • [6] Liquid Crystal Pancharatnam-Berry Optical Elements
    Zhou, Ziyuan
    Guo, Yubing
    Yu, Hao
    Jiang, Miao
    Turiv, Taras
    Chaganava, Irakli
    Lavrentovich, Oleg D.
    Wei, Qi-Huo
    LIQUID CRYSTALS XXIII, 2019, 11092
  • [7] Micro-patterned liquid crystal Pancharatnam-Berry axilens
    任嘉瑞
    王炜畅
    杨魏强
    袁丛龙
    周康
    李萧
    谈铭威
    蒙翠玲
    孙嘉曈
    Vladimir G.Chigrinov
    郭海成
    王骁乾
    郑致刚
    沈冬
    Chinese Optics Letters, 2018, 16 (06) : 82 - 86
  • [8] Micro-patterned liquid crystal Pancharatnam-Berry axilens
    Ren, Jiarui
    Wang, Weichang
    Yang, Weiqiang
    Yuan, Conglong
    Zhou, Kang
    Li, Xiao
    Tam, Alwin Mingwai
    Meng, Cuiling
    Sun, Jiatong
    Chigrinov, Vladimir G.
    Kwok, Hoising
    Wang, Xiaoqian
    Zheng, Zhigang
    Shen, Doug
    CHINESE OPTICS LETTERS, 2018, 16 (06)
  • [9] Ferroelectric liquid crystal Pancharatnam-Berry lens with a fast control of output light's polarization-handedness
    Ma, Ying
    Yin, Mingkui
    Shan, Yuhang
    Liu, Xiaoyu
    Qi, Shuxia
    Chigrinov, Vladimir G.
    Kwok, Hoi-Sing
    Zhao, Jianlin
    OPTICS EXPRESS, 2021, 29 (17): : 27472 - 27480
  • [10] Single-exposure fabrication of tunable Pancharatnam-Berry devices using a dye-doped liquid crystal
    Li, Yan
    Liu, Yueda
    Li, Sida
    Zhou, Pengcheng
    Zhan, Tao
    Chen, Quanming
    Su, Yikai
    Wu, Shin-Tson
    OPTICS EXPRESS, 2019, 27 (06): : 9054 - 9060