Quantum Teleportation in the Commuting Operator Framework

被引:1
|
作者
Conlon, Alexandre [1 ]
Crann, Jason [1 ]
Kribs, David W. W. [2 ,3 ]
Levene, Rupert H. H. [4 ,5 ]
机构
[1] Carleton Univ, Sch Math & Stat, Ottawa, ON H1S 5B6, Canada
[2] Univ Guelph, Dept Math & Stat, Guelph, ON N1G 2W1, Canada
[3] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[4] Univ Coll Dublin, Sch Math & Stat, Dublin 4, Ireland
[5] Univ Coll Dublin, Ctr Quantum Engn Sci & Technol, Dublin 4, Ireland
来源
ANNALES HENRI POINCARE | 2023年 / 24卷 / 05期
基金
加拿大自然科学与工程研究理事会;
关键词
46L10; 46L30; 46N50; 47L90; 81P40; 81P45; 81R15; SUBFACTORS; CHANNELS; CAPACITY; ENTROPY; INDEX;
D O I
10.1007/s00023-022-01255-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a notion of teleportation scheme between subalgebras of semi-finite von Neumann algebras in the commuting operator model of locality. Using techniques from subfactor theory, we present unbiased teleportation schemes for relative commutants N' & cap; M of a large class of finite-index inclusions N subset of M of tracial von Neumann algebras, where the unbiased condition means that no information about the teleported observables is contained in the classical communication sent between the parties. For a large class of subalgebras N of matrix algebras Mn(C), including those relevant to hybrid classical/quantum codes, we show that any tight teleportation scheme for N necessarily arises from an orthonormal unitary Pimsner-Popa basis of Mn(C) over N', generalising work of Werner (J Phys A 34(35):7081-7094, 2001). Combining our techniques with those of Brannan-Ganesan-Harris (J Math Phys 63(11): 112204, 2022) we compute quantum chromatic numbers for a variety of quantum graphs arising from finite-dimensional inclusions N subset of M.
引用
收藏
页码:1779 / 1821
页数:43
相关论文
共 50 条
  • [1] Quantum Teleportation in the Commuting Operator Framework
    Alexandre Conlon
    Jason Crann
    David W. Kribs
    Rupert H. Levene
    Annales Henri Poincaré, 2023, 24 : 1779 - 1821
  • [2] MEASUREMENT OF THE BELL OPERATOR AND QUANTUM TELEPORTATION
    BRAUNSTEIN, SL
    MANN, A
    PHYSICAL REVIEW A, 1995, 51 (03): : R1727 - R1730
  • [3] Entanglement Witness Operator for Quantum Teleportation
    Ganguly, Nirman
    Adhikari, Satyabrata
    Majumdar, A. S.
    Chatterjee, Jyotishman
    PHYSICAL REVIEW LETTERS, 2011, 107 (27)
  • [4] The Schmidt Rank for the Commuting Operator Framework
    van Luijk, Lauritz
    Schwonnek, Rene
    Stottmeister, Alexander
    Werner, Reinhard F.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2024, 405 (07)
  • [5] THE TRANSFORMATION OPERATOR OF THE QUANTUM STATE AND PROBABILISTIC TELEPORTATION
    Shangguan Liying
    Sun Hongxiang
    Chen Xiubo
    Wen Qiaoyan
    Zhu Fuchen
    PROCEEDINGS OF 2009 2ND IEEE INTERNATIONAL CONFERENCE ON BROADBAND NETWORK & MULTIMEDIA TECHNOLOGY, 2009, : 877 - +
  • [6] An operator description of entanglement matching in quantum teleportation
    Kurucz, Z
    Koniorczyk, M
    Adam, P
    Janszky, J
    JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2003, 5 (06) : S627 - S632
  • [7] Improving the Teleportation Cost in Distributed Quantum Circuits Based on Commuting of Gates
    Omid Daei
    Keivan Navi
    Mariam Zomorodi
    International Journal of Theoretical Physics, 2021, 60 : 3494 - 3513
  • [8] Quantum teleportation using a transfer-operator method
    Ide, Toshiki
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2006, (164): : 176 - 185
  • [9] Improving the Teleportation Cost in Distributed Quantum Circuits Based on Commuting of Gates
    Daei, Omid
    Navi, Keivan
    Zomorodi, Mariam
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2021, 60 (09) : 3494 - 3513
  • [10] Quantum Teleportation and Super-Dense Coding in Operator Algebras
    Gao, Li
    Harris, Samuel J.
    Junge, Marius
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (12) : 9146 - 9179