A posteriori error estimates for the time-dependent Navier-Stokes system coupled with the convection-diffusion-reaction equation

被引:0
|
作者
Dakroub, Jad [1 ]
Faddoul, Joanna [2 ,3 ]
Omnes, Pascal [3 ,4 ]
Sayah, Toni [2 ]
机构
[1] Univ St Joseph Beyrouth, Fac Ingenieurs, Beirut, Lebanon
[2] Univ St Joseph, Unite Rech Math & Modelisat, Lab Math & Applicat, CAR,Fac Sci, BP 11-514 Riad El Solh, Beirut 11072050, Lebanon
[3] Univ Sorbonne Paris Nord, LAGA, CNRS UMR 7539, Inst Galilee, 99 Ave JB Clement, F-93430 Villetaneuse, France
[4] Univ Paris Saclay, CEA, Serv Thermohydraul & Mecan Fluides, F-91191 Gif Sur Yvette, France
关键词
A posteriori error estimation; Navier-Stokes problem; Convection-diffusion-reaction equation; Finite element method; Adaptive methods; DISCRETIZATION;
D O I
10.1007/s10444-023-10066-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the a posteriori error estimates for the time dependent Navier-Stokes system coupled with the convection-diffusion-reaction equation. The problem is discretized in time using the implicit Euler method and in space using the finite element method. We establish a posteriori error estimates with two types of computable error indicators, the first one linked to the space discretization and the second one to the time discretization. Finally, numerical investigations are performed and presented.
引用
收藏
页数:60
相关论文
共 50 条
  • [41] A posteriori error estimates for the large eddy simulation applied to stationary Navier-Stokes equations
    Nassreddine, Ghina
    Omnes, Pascal
    Sayah, Toni
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2022, 38 (05) : 1468 - 1498
  • [42] A posteriori error estimates of stabilized finite element method for the steady Navier-Stokes problem
    Zhang, Tong
    Zhao, Xin
    Lei, Gang
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (17) : 9081 - 9092
  • [43] A POSTERIORI ERROR ESTIMATES FOR A DISTRIBUTED OPTIMAL CONTROL PROBLEM OF THE STATIONARY NAVIER-STOKES EQUATIONS
    Allendes, Alejandro
    Fuica, Francisco
    Otarola, Enrique
    Quero, Daniel
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2021, 59 (04) : 2898 - 2923
  • [44] A posteriori error analysis of the fully discretized time-dependent coupled Darcy and Stokes equations
    Bernardi, Christine
    Orfi, Ajmia Younes
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (02) : 340 - 360
  • [45] A MIXED METHOD FOR THE TIME-DEPENDENT NAVIER-STOKES PROBLEM
    BERNARDI, C
    GODLEWSKI, E
    RAUGEL, G
    IMA JOURNAL OF NUMERICAL ANALYSIS, 1987, 7 (02) : 165 - 189
  • [46] Optimization with the time-dependent Navier-Stokes equations as constraints
    Vizheh, Mitra
    Momeni-Masuleh, Sayed Hodjatollah
    Malek, Alaeddin
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2015, 3 (02): : 87 - 98
  • [47] PROJECTION METHODS FOR TIME-DEPENDENT NAVIER-STOKES EQUATIONS
    SHEN, J
    APPLIED MATHEMATICS LETTERS, 1992, 5 (01) : 35 - 37
  • [48] EXTRAPOLATION PROCEDURES FOR THE TIME-DEPENDENT NAVIER-STOKES EQUATIONS
    NORDSTROM, J
    AIAA JOURNAL, 1992, 30 (06) : 1654 - 1656
  • [49] Shape reconstruction for the time-dependent Navier-Stokes flow
    Yan, Wen-Jing
    Ma, Yi-Chen
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2008, 24 (04) : 1148 - 1158
  • [50] PROBLEMS OF TIME-DEPENDENT NAVIER-STOKES FLOW.
    Wu, J.C.
    Rizk, Y.M.
    Sankar, N.L.
    Developments in Boundary Element Methods, 1984, : 137 - 169