Shape reconstruction for the time-dependent Navier-Stokes flow

被引:1
|
作者
Yan, Wen-Jing [1 ]
Ma, Yi-Chen [1 ]
机构
[1] Xian Jiaotong Univ, Sch Sci, Xian 710049, Shaanxi, Peoples R China
关键词
domain derivative; inverse problem; shape reconstruction; the time-dependent Navier-Stokes equations;
D O I
10.1002/num.20310
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article deals with the shape reconstruction of a bounded domain with a viscous incompressible fluid driven by the time-dependent Navier-Stokes equations. For the approximate solution of the ill-posed and nonlinear problem we propose a regularized Newton method. A theoretical foundation for the Newton method is given by establishing the differentiability of the initial boundary value problem with respect to the interior boundary curve in the sense of the domain derivative. Numerical examples indicate the feasibility of our method. (C) 2007 Wiley Periodicals, Inc.
引用
收藏
页码:1148 / 1158
页数:11
相关论文
共 50 条
  • [1] Optimal shape design for the time-dependent Navier-Stokes flow
    Gao, Zhiming
    Ma, Yichen
    Zhuang, Hongwei
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2008, 57 (10) : 1505 - 1526
  • [2] PROBLEMS OF TIME-DEPENDENT NAVIER-STOKES FLOW.
    Wu, J.C.
    Rizk, Y.M.
    Sankar, N.L.
    Developments in Boundary Element Methods, 1984, : 137 - 169
  • [3] Analysis of time-dependent Navier-Stokes flow coupled with Darcy flow
    Cesmelioglu, A.
    Riviere, B.
    JOURNAL OF NUMERICAL MATHEMATICS, 2008, 16 (04) : 249 - 280
  • [4] TIME-DEPENDENT SINGULARITIES IN THE NAVIER-STOKES SYSTEM
    Karch, Grzegorz
    Zheng, Xiaoxin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (07) : 3039 - 3057
  • [5] Stability of Time-Dependent Navier-Stokes Flow and Algebraic Energy Decay
    Hishida, Toshiaki
    Schonbek, Maria E.
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2016, 65 (04) : 1307 - 1346
  • [6] A MIXED METHOD FOR THE TIME-DEPENDENT NAVIER-STOKES PROBLEM
    BERNARDI, C
    GODLEWSKI, E
    RAUGEL, G
    IMA JOURNAL OF NUMERICAL ANALYSIS, 1987, 7 (02) : 165 - 189
  • [7] Optimization with the time-dependent Navier-Stokes equations as constraints
    Vizheh, Mitra
    Momeni-Masuleh, Sayed Hodjatollah
    Malek, Alaeddin
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2015, 3 (02): : 87 - 98
  • [8] PROJECTION METHODS FOR TIME-DEPENDENT NAVIER-STOKES EQUATIONS
    SHEN, J
    APPLIED MATHEMATICS LETTERS, 1992, 5 (01) : 35 - 37
  • [9] EXTRAPOLATION PROCEDURES FOR THE TIME-DEPENDENT NAVIER-STOKES EQUATIONS
    NORDSTROM, J
    AIAA JOURNAL, 1992, 30 (06) : 1654 - 1656
  • [10] TIME-DEPENDENT COUPLING OF NAVIER-STOKES AND DARCY FLOWS
    Cesmelioglu, Aycil
    Girault, Vivette
    Riviere, Beatrice
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2013, 47 (02): : 540 - 555