A posteriori error estimates for the time-dependent Navier-Stokes system coupled with the convection-diffusion-reaction equation

被引:0
|
作者
Dakroub, Jad [1 ]
Faddoul, Joanna [2 ,3 ]
Omnes, Pascal [3 ,4 ]
Sayah, Toni [2 ]
机构
[1] Univ St Joseph Beyrouth, Fac Ingenieurs, Beirut, Lebanon
[2] Univ St Joseph, Unite Rech Math & Modelisat, Lab Math & Applicat, CAR,Fac Sci, BP 11-514 Riad El Solh, Beirut 11072050, Lebanon
[3] Univ Sorbonne Paris Nord, LAGA, CNRS UMR 7539, Inst Galilee, 99 Ave JB Clement, F-93430 Villetaneuse, France
[4] Univ Paris Saclay, CEA, Serv Thermohydraul & Mecan Fluides, F-91191 Gif Sur Yvette, France
关键词
A posteriori error estimation; Navier-Stokes problem; Convection-diffusion-reaction equation; Finite element method; Adaptive methods; DISCRETIZATION;
D O I
10.1007/s10444-023-10066-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the a posteriori error estimates for the time dependent Navier-Stokes system coupled with the convection-diffusion-reaction equation. The problem is discretized in time using the implicit Euler method and in space using the finite element method. We establish a posteriori error estimates with two types of computable error indicators, the first one linked to the space discretization and the second one to the time discretization. Finally, numerical investigations are performed and presented.
引用
收藏
页数:60
相关论文
共 50 条
  • [21] Finite Volume Method for a Time-Dependent Convection-Diffusion-Reaction Equation with Small Parameters
    Ahmed, Uzair
    Mashat, Daoud Suleiman
    Maturi, Dalal Adnan
    INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 2022
  • [22] ON ERROR ESTIMATES OF THE PRESSURE-CORRECTION PROJECTION METHODS FOR THE TIME-DEPENDENT NAVIER-STOKES EQUATIONS
    Sun, Haiyan
    He, Yinnian
    Feng, Xinlong
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2011, 8 (01) : 70 - 85
  • [23] A POSTERIORI ERROR ESTIMATES FOR THE STATIONARY NAVIER-STOKES EQUATIONS WITH DIRAC MEASURES
    Allendes, Alejandro
    Otarola, Enrique
    Salgado, Abner J.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (03): : A1860 - A1884
  • [24] A posteriori error analysis for Navier-Stokes equations coupled with Darcy problem
    Hadji, M. L.
    Assala, A.
    Nouri, F. Z.
    CALCOLO, 2015, 52 (04) : 559 - 576
  • [25] A New Residual Posteriori Error Estimates of Mixed Finite Element Methods for Convection-Diffusion-Reaction Equations
    Du, Shaohong
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2014, 30 (02) : 593 - 624
  • [26] UNCONDITIONALLY OPTIMAL ERROR ESTIMATES OF THE BILINEAR-CONSTANT SCHEME FOR TIME-DEPENDENT NAVIER-STOKES EQUATIONS
    Yang, Huaijun
    Shi, Dongyang
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2022, 40 (01): : 127 - 146
  • [27] A posteriori error estimates and an adaptive finite element solution for the system of unsteady convection-diffusion-reaction equations in fluidized beds
    Varma, V. Dhanya
    Nadupuri, Suresh Kumar
    Chamakuri, Nagaiah
    APPLIED NUMERICAL MATHEMATICS, 2021, 163 : 108 - 125
  • [28] Analysis of time-dependent Navier-Stokes flow coupled with Darcy flow
    Cesmelioglu, A.
    Riviere, B.
    JOURNAL OF NUMERICAL MATHEMATICS, 2008, 16 (04) : 249 - 280
  • [29] Convergence of IPDG for coupled time-dependent Navier-Stokes and Darcy equations
    Chaabane, Nabil
    Girault, Vivette
    Puelz, Charles
    Riviere, Beatrice
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 324 : 25 - 48
  • [30] Virtual element stabilization for the system of time-dependent nonlinear convection-diffusion-reaction equations
    Arrutselvi, M.
    Natarajan, E.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 142 : 121 - 139