Infinitesimal symmetries of bundle gerbes and Courant algebroids

被引:1
|
作者
Djounvouna, Dinamo [1 ]
Krepski, Derek [1 ]
机构
[1] Univ Manitoba, Dept Math, Winnipeg, MB, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Bundle gerbe; Courant algebroid; Lie; 2-algebra; Multisymplectic; 2-plectic; Quantomorphism; LIE; GEOMETRY;
D O I
10.1007/s10711-024-00897-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be a smooth manifold and let chi is an element of omega 3(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi \in \Omega <^>3(M)$$\end{document} be closed differential form with integral periods. We show the Lie 2-algebra L(C chi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {L}(C_\chi )$$\end{document} of sections of the chi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document}-twisted Courant algebroid C chi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_\chi $$\end{document} on M is quasi-isomorphic to the Lie 2-algebra of connection-preserving multiplicative vector fields on an S1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S<^>1$$\end{document}-bundle gerbe with connection (over M) whose 3-curvature is chi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document}.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Infinitesimal symmetries of bundle gerbes and Courant algebroids
    Dinamo Djounvouna
    Derek Krepski
    Geometriae Dedicata, 2024, 218
  • [2] Courant algebroids
    Bressler P.
    Chervov A.
    Journal of Mathematical Sciences, 2005, 128 (4) : 3030 - 3053
  • [3] Smooth 2-Group Extensions and Symmetries of Bundle Gerbes
    Severin Bunk
    Lukas Müller
    Richard J. Szabo
    Communications in Mathematical Physics, 2021, 384 : 1829 - 1911
  • [4] Smooth 2-Group Extensions and Symmetries of Bundle Gerbes
    Bunk, Severin
    Mueller, Lukas
    Szabo, Richard J.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 384 (03) : 1829 - 1911
  • [5] ON REGULAR COURANT ALGEBROIDS
    Chen, Zhuo
    Stienon, Mathieu
    Xu, Ping
    JOURNAL OF SYMPLECTIC GEOMETRY, 2013, 11 (01) : 1 - 24
  • [6] VB-Courant Algebroids, E-Courant Algebroids and Generalized Geometry
    Lang, Honglei
    Sheng, Yunhe
    Wade, Aissa
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2018, 61 (03): : 588 - 607
  • [7] On higher analogues of Courant algebroids
    Bi YanHui
    Sheng YunHe
    SCIENCE CHINA-MATHEMATICS, 2011, 54 (03) : 437 - 447
  • [8] HIERARCHIES AND COMPATIBILITY ON COURANT ALGEBROIDS
    Antunes, Paulo
    Laurent-Gengoux, Camille
    Nunes da Costa, Joana M.
    PACIFIC JOURNAL OF MATHEMATICS, 2013, 261 (01) : 1 - 32
  • [9] Pre-Courant algebroids
    Bruce, Andrew James
    Grabowski, Janusz
    JOURNAL OF GEOMETRY AND PHYSICS, 2019, 142 : 254 - 273
  • [10] Dorfman connections and Courant algebroids
    Lean, M. Jotz
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 116 : 1 - 39