SINDy-CRN: Sparse Identification of Chemical Reaction Networks from Data

被引:0
|
作者
Bhatt, Nirav [1 ,2 ]
Jayawardhana, Bayu [3 ,4 ]
Plaza, Santiago Sanchez-Escalonilla [3 ,4 ]
机构
[1] Indian Inst Technol, Dept Biotechnol, Madras, Tamil Nadu, India
[2] Indian Inst Technol, Res Ctr Data Sci, Madras, Tamil Nadu, India
[3] Indian Inst Technol, AI DSAI, Madras, Tamil Nadu, India
[4] Univ Groningen, Engn & Technol Inst Groningen, Fac Sci & Engn, NL-9747AG Groningen, Netherlands
基金
荷兰研究理事会;
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work considers an important problem of identifying the dynamics of chemical reaction networks from time-series data. We propose an approach to identify complex chemical reaction networks (CRN) from concentration data using the concept of sparse model identification. Particularly, we demonstrate challenges associated with the application of the sparse identification of nonlinear dynamics (SINDy) and its variants to data obtained from CRNs. We develop a SINDyCRN algorithm based on the properties of CRNs for identifying governing equations of a CRN. The proposed algorithm is illustrated using a numerical simulation example.
引用
收藏
页码:3512 / 3518
页数:7
相关论文
共 50 条
  • [41] Global Parameter Identification of Stochastic Reaction Networks from Single Trajectories
    Mueller, Christian L.
    Ramaswamy, Rajesh
    Sbalzarini, Ivo F.
    ADVANCES IN SYSTEMS BIOLOGY, 2012, 736 : 477 - 498
  • [42] Identification of chemical structures from infrared spectra by using neural networks
    Tanabe, K
    Matsumoto, T
    Tamura, T
    Hiraishi, J
    Saeki, S
    Arima, M
    Ono, C
    Itoh, S
    Uesaka, H
    Tatsugi, Y
    Yatsunami, K
    Inaba, T
    Mitsuhashi, M
    Kohara, S
    Masago, H
    Kaneuchi, F
    Jin, C
    Ono, S
    APPLIED SPECTROSCOPY, 2001, 55 (10) : 1394 - 1403
  • [43] Sparse identification method of extracting hybrid energy harvesting system from observed data
    孙亚辉
    曾远辉
    杨勇歌
    Chinese Physics B, 2022, (12) : 28 - 39
  • [44] Autonomous Discovery of Unknown Reaction Pathways from Data by Chemical Reaction Neural Network
    Ji, Weiqi
    Deng, Sili
    JOURNAL OF PHYSICAL CHEMISTRY A, 2021, 125 (04): : 1082 - 1092
  • [45] Sparse identification of a predator-prey system from simulation data of a convection model
    Dam, Magnus
    Brons, Morten
    Rasmussen, Jens Juul
    Naulin, Volker
    Hesthaven, Jan S.
    PHYSICS OF PLASMAS, 2017, 24 (02)
  • [46] Sparse identification method of extracting hybrid energy harvesting system from observed data
    Sun, Ya-Hui
    Zeng, Yuan-Hui
    Yang, Yong-Ge
    CHINESE PHYSICS B, 2022, 31 (12)
  • [47] Dynamic reconstruction from noise contaminated data with sparse Bayesian recurrent neural networks
    Mirikitani, Derrick T.
    Park, Incheon
    Daoudi, Mohammed
    AMS 2007: FIRST ASIA INTERNATIONAL CONFERENCE ON MODELLING & SIMULATION ASIA MODELLING SYMPOSIUM, PROCEEDINGS, 2007, : 409 - +
  • [48] UAV-assisted data gathering from a sparse wireless sensor adaptive networks
    Karegar, Pejman A.
    Al-Anbuky, Adnan
    WIRELESS NETWORKS, 2023, 29 (03) : 1367 - 1384
  • [49] UAV-assisted data gathering from a sparse wireless sensor adaptive networks
    Pejman A. Karegar
    Adnan Al-Anbuky
    Wireless Networks, 2023, 29 : 1367 - 1384
  • [50] Fault identification for power transformer based on dissolved gas in oil data using sparse convolutional neural networks
    Liu, Zhijian
    He, Wei
    Liu, Hang
    Luo, Linglin
    Zhang, Dechun
    Niu, Ben
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2024, 18 (03) : 517 - 529