SINDy-CRN: Sparse Identification of Chemical Reaction Networks from Data

被引:0
|
作者
Bhatt, Nirav [1 ,2 ]
Jayawardhana, Bayu [3 ,4 ]
Plaza, Santiago Sanchez-Escalonilla [3 ,4 ]
机构
[1] Indian Inst Technol, Dept Biotechnol, Madras, Tamil Nadu, India
[2] Indian Inst Technol, Res Ctr Data Sci, Madras, Tamil Nadu, India
[3] Indian Inst Technol, AI DSAI, Madras, Tamil Nadu, India
[4] Univ Groningen, Engn & Technol Inst Groningen, Fac Sci & Engn, NL-9747AG Groningen, Netherlands
基金
荷兰研究理事会;
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work considers an important problem of identifying the dynamics of chemical reaction networks from time-series data. We propose an approach to identify complex chemical reaction networks (CRN) from concentration data using the concept of sparse model identification. Particularly, we demonstrate challenges associated with the application of the sparse identification of nonlinear dynamics (SINDy) and its variants to data obtained from CRNs. We develop a SINDyCRN algorithm based on the properties of CRNs for identifying governing equations of a CRN. The proposed algorithm is illustrated using a numerical simulation example.
引用
收藏
页码:3512 / 3518
页数:7
相关论文
共 50 条
  • [21] Identification of dynamic mass-action biochemical reaction networks using sparse Bayesian methods
    Jiang, Richard
    Singh, Prashant
    Wrede, Fredrik
    Hellander, Andreas
    Petzold, Linda
    PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (01)
  • [22] Mechanism deduction from noisy chemical reaction networks
    Proppe, Jonny
    Reiher, Markus
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [23] Chemical Reaction Neural Networks for fitting Accelerating Rate Calorimetry data
    Bhatnagar, Saakaar
    Comerford, Andrew
    Xu, Zelu
    Polato, Davide Berti
    Banaeizadeh, Araz
    Ferraris, Alessandro
    JOURNAL OF POWER SOURCES, 2025, 628
  • [24] Path inference from sparse floating car data for urban networks
    Rahmani, Mahmood
    Koutsopoulos, Hans N.
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2013, 30 : 41 - 54
  • [25] Parameter Estimation for Kinetic Models of Chemical Reaction Networks from Partial Experimental Data of Species' Concentrations
    Gasparyan, Manvel
    Rao, Shodhan
    BIOENGINEERING-BASEL, 2023, 10 (09):
  • [26] Identification of alterations in the Jacobian of biochemical reaction networks from steady state covariance data at two conditions
    Philipp Kügler
    Wei Yang
    Journal of Mathematical Biology, 2014, 68 : 1757 - 1783
  • [27] Identification of alterations in the Jacobian of biochemical reaction networks from steady state covariance data at two conditions
    Kuegler, Philipp
    Yang, Wei
    JOURNAL OF MATHEMATICAL BIOLOGY, 2014, 68 (07) : 1757 - 1783
  • [28] Equilibriumlike behavior in chemical reaction networks far from equilibrium
    Lubensky, David K.
    PHYSICAL REVIEW E, 2010, 81 (06):
  • [29] Identification of Neuronal Networks from Calcium Oscillation Data
    Varanasi, Santhosh Kumar
    Swain, Sarpras
    Giri, Lopamudra
    Jampana, Phanindra
    IFAC PAPERSONLINE, 2019, 52 (01): : 544 - 549
  • [30] Model Selection in Stochastic Chemical Reaction Networks Using Flow Cytometry Data
    Lillacci, Gabriele
    Khammash, Mustafa
    2011 50TH IEEE CONFERENCE ON DECISION AND CONTROL AND EUROPEAN CONTROL CONFERENCE (CDC-ECC), 2011, : 1680 - 1685