SINDy-CRN: Sparse Identification of Chemical Reaction Networks from Data

被引:0
|
作者
Bhatt, Nirav [1 ,2 ]
Jayawardhana, Bayu [3 ,4 ]
Plaza, Santiago Sanchez-Escalonilla [3 ,4 ]
机构
[1] Indian Inst Technol, Dept Biotechnol, Madras, Tamil Nadu, India
[2] Indian Inst Technol, Res Ctr Data Sci, Madras, Tamil Nadu, India
[3] Indian Inst Technol, AI DSAI, Madras, Tamil Nadu, India
[4] Univ Groningen, Engn & Technol Inst Groningen, Fac Sci & Engn, NL-9747AG Groningen, Netherlands
基金
荷兰研究理事会;
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work considers an important problem of identifying the dynamics of chemical reaction networks from time-series data. We propose an approach to identify complex chemical reaction networks (CRN) from concentration data using the concept of sparse model identification. Particularly, we demonstrate challenges associated with the application of the sparse identification of nonlinear dynamics (SINDy) and its variants to data obtained from CRNs. We develop a SINDyCRN algorithm based on the properties of CRNs for identifying governing equations of a CRN. The proposed algorithm is illustrated using a numerical simulation example.
引用
收藏
页码:3512 / 3518
页数:7
相关论文
共 50 条
  • [31] SPIN: A data-driven model to reduce large chemical reaction networks
    Baranwal, Mayank
    Saldinger, Jacob C.
    Kim, Doohyun
    Elvati, Paolo
    Hero, Alfred O.
    Violi, Angele
    FUEL, 2024, 367
  • [32] Rapid Bayesian identification of sparse nonlinear dynamics from scarce and noisy data
    Fung, Lloyd
    Fasel, Urban
    Juniper, Matthew
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2025, 481 (2307):
  • [33] DERIVING THERMAL MODEL FROM DATA BY SPARSE IDENTIFICATION BASED ON PHYSICAL LAWS
    Suzuki, Tomoyuki
    Kano, Akira
    Hirohata, Kenji
    PROCEEDINGS OF ASME 2021 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION (IMECE2021), VOL 11, 2021,
  • [34] Discovering governing equations from data by sparse identification of nonlinear dynamical systems
    Brunton, Steven L.
    Proctor, Joshua L.
    Kutz, J. Nathan
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (15) : 3932 - 3937
  • [35] Optimizing bags of artificial neural networks for the prediction of viability from sparse data
    Daly, Clyde A., Jr.
    Hernandez, Rigoberto
    JOURNAL OF CHEMICAL PHYSICS, 2020, 153 (05):
  • [36] Continuous Cotemporal Probabilistic Modeling of Systems Biology Networks from Sparse Data
    John, David J.
    Fetrow, Jacquelyn S.
    Norris, James L.
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2011, 8 (05) : 1208 - 1222
  • [37] Location of seismic events using inaccurate data from very sparse networks
    Knapmeyer, Martin
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2008, 175 (03) : 975 - 991
  • [38] Chemical Reaction Networks from Scratch with Reaction Prediction and Kinetics-Guided Exploration
    Woulfe, Michael
    Savoie, Brett M.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2025, 21 (03) : 1276 - 1291
  • [39] CALCULATION OF CHEMICAL REACTION PROBABILITIES FROM ELASTIC SCATTERING DATA
    ROSENFEL.JL
    ROSS, J
    JOURNAL OF CHEMICAL PHYSICS, 1966, 44 (01): : 188 - &
  • [40] Nonequilibrium Thermodynamics of Chemical Reaction Networks: Wisdom from Stochastic Thermodynamics
    Rao, Riccardo
    Esposito, Massimiliano
    PHYSICAL REVIEW X, 2016, 6 (04):