A machine learning route between band mapping and band structure

被引:12
|
作者
Xian, R. Patrick [1 ,3 ]
Stimper, Vincent [2 ]
Zacharias, Marios [1 ,4 ]
Dendzik, Maciej [1 ,5 ]
Dong, Shuo [1 ]
Beaulieu, Samuel [1 ,6 ]
Scholkopf, Bernhard [2 ]
Wolf, Martin [1 ]
Rettig, Laurenz [1 ]
Carbogno, Christian [1 ]
Bauer, Stefan [2 ,7 ]
Ernstorfer, Ralph [1 ]
机构
[1] Fritz Haber Inst Max Planck Soc, Berlin, Germany
[2] Max Planck Inst Intelligent Syst, Dept Empir Inference, Tubingen, Germany
[3] UCL, Dept Mech Engn, London, England
[4] Univ Rennes, Inst FOTON, CNRS, INSA Rennes, Rennes, France
[5] KTH Royal Inst Technol, Dept Appl Phys, Stockholm, Sweden
[6] Univ Bordeaux, CELIA, CNRS, CEA, Talence, France
[7] KTH Royal Inst Technol, Div Decis & Control Syst, Stockholm, Sweden
来源
NATURE COMPUTATIONAL SCIENCE | 2023年 / 3卷 / 01期
基金
加拿大自然科学与工程研究理事会; 欧洲研究理事会;
关键词
ELECTRON-GAS; PHOTOEMISSION; REPRESENTATION; SPECTROSCOPY; SURFACE; SPACE;
D O I
10.1038/s43588-022-00382-2
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The electronic band structure and crystal structure are the two complementary identifiers of solid-state materials. Although convenient instruments and reconstruction algorithms have made large, empirical, crystal structure databases possible, extracting the quasiparticle dispersion (closely related to band structure) from photoemission band mapping data is currently limited by the available computational methods. To cope with the growing size and scale of photoemission data, here we develop a pipeline including probabilistic machine learning and the associated data processing, optimization and evaluation methods for band-structure reconstruction, leveraging theoretical calculations. The pipeline reconstructs all 14 valence bands of a semiconductor and shows excellent performance on benchmarks and other materials datasets. The reconstruction uncovers previously inaccessible momentum-space structural information on both global and local scales, while realizing a path towards integration with materials science databases. Our approach illustrates the potential of combining machine learning and domain knowledge for scalable feature extraction in multidimensional data.
引用
收藏
页码:101 / 114
页数:14
相关论文
共 50 条
  • [11] Machine learning band gaps from the electron density
    Moreno, Javier Robledo
    Flick, Johannes
    Georges, Antoine
    PHYSICAL REVIEW MATERIALS, 2021, 5 (08)
  • [12] Band structure mapping of photonic crystal intersubband detectors
    Schartner, S.
    Golka, S.
    Pfluegl, C.
    Schrenk, W.
    Andrews, A. M.
    Roch, T.
    Strasser, G.
    APPLIED PHYSICS LETTERS, 2006, 89 (15)
  • [13] Band gap and band alignment prediction of nitride-based semiconductors using machine learning
    Huang, Yang
    Yu, Changyou
    Chen, Weiguang
    Liu, Yuhuai
    Li, Chong
    Niu, Chunyao
    Wang, Fei
    Jia, Yu
    JOURNAL OF MATERIALS CHEMISTRY C, 2019, 7 (11) : 3238 - 3245
  • [14] Reconstructing the Semiconductor Band Structure by Deep Learning
    Yang, Shidong
    Liu, Xiwang
    Lin, Jinyan
    Zuo, Ruixin
    Song, Xiaohong
    Ciappina, Marcelo
    Yang, Weifeng
    MATHEMATICS, 2022, 10 (22)
  • [15] Machine learning for deep elastic strain engineering of semiconductor electronic band structure and effective mass
    Evgenii Tsymbalov
    Zhe Shi
    Ming Dao
    Subra Suresh
    Ju Li
    Alexander Shapeev
    npj Computational Materials, 7
  • [16] Machine learning for deep elastic strain engineering of semiconductor electronic band structure and effective mass
    Tsymbalov, Evgenii
    Shi, Zhe
    Dao, Ming
    Suresh, Subra
    Li, Ju
    Shapeev, Alexander
    NPJ COMPUTATIONAL MATERIALS, 2021, 7 (01)
  • [17] Machine learning predictions of band gap and band edge for (GaN)1−x(ZnO)x solid solution using crystal structure information
    Jingcheng Xu
    Qianli Wang
    Quan Yuan
    Huilin Chen
    Shunyao Wang
    Yang Fan
    Journal of Materials Science, 2023, 58 : 7986 - 7994
  • [18] Machine learning-driven design of dual-band antennas using PGGAN and enhanced feature mapping
    Tuen, Lung-Fai
    Li, Ching-Lieh
    Chi, Yu-Jen
    Chiu, Chien-Ching
    Chen, Po Hsiang
    IET MICROWAVES ANTENNAS & PROPAGATION, 2024, 18 (12) : 1113 - 1138
  • [19] Machine learning-driven design of dual-band antennas using PGGAN and enhanced feature mapping
    Tuen, Lung-Fai
    Li, Ching-Lieh
    Chi, Yu-Jen
    Chiu, Chien-Ching
    Chen, Po Hsiang
    IET Microwaves, Antennas and Propagation, 2024, 18 (12): : 1113 - 1138
  • [20] 'BIG BAND MACHINE'
    MALTIN, AL
    DOWN BEAT, 1976, 43 (01): : 25 - 26