Machine learning predictions of band gap and band edge for (GaN)1−x(ZnO)x solid solution using crystal structure information

被引:0
|
作者
Jingcheng Xu
Qianli Wang
Quan Yuan
Huilin Chen
Shunyao Wang
Yang Fan
机构
[1] University of Shanghai for Science and Technology,School of Materials and Chemistry
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The (GaN)1−x(ZnO)x solid solution is an ideal material for the next generation photocatalyst due to good chemical stability and excellent optical property. Although full range content regulation of ZnO has been achieved, the isomeric phenomena of solid solutions make it difficult to establish a structure–property relationship. Here, we constructed a series of random (GaN)1−x(ZnO)x structures and calculated the band properties using DFT. Seven supervised machine learning models were trained to understand band properties base on microstructure. The results show that the Random Forest Regressor model is optimal for predicting band gap and band edge position with proposed microstructure descriptors. Feature importance and SHAP analyses indicate four local microstructures are main structural factors influencing band structure. This work is helpful for understanding the relationship between microstructure and band property, and designing excellent photocatalytic (GaN)1−x(ZnO)x solid solutions.
引用
收藏
页码:7986 / 7994
页数:8
相关论文
共 50 条
  • [1] Machine learning predictions of band gap and band edge for (GaN)1-x(ZnO)x solid solution using crystal structure information
    Xu, Jingcheng
    Wang, Qianli
    Yuan, Quan
    Chen, Huilin
    Wang, Shunyao
    Fan, Yang
    JOURNAL OF MATERIALS SCIENCE, 2023, 58 (19) : 7986 - 7994
  • [2] Composition and Band Gap Tailoring of Crystalline (GaN)1-x,(ZnO)x Solid Solution Nanowires for Enhanced Photoelectrochemical Performance
    Li, Jing
    Liu, Baodan
    Wu, Aimin
    Yang, Bing
    Yang, Wenjin
    Liu, Fei
    Zhang, Xinglai
    An, Vladimir
    Jiang, Xin
    INORGANIC CHEMISTRY, 2018, 57 (09) : 5240 - 5248
  • [3] Evidence of defect band mechanism responsible for band gap evolution in (ZnO)1-x(GaN)x alloys
    Olsen, V. S.
    Baldissera, G.
    Zimmermann, C.
    Granerod, C. S.
    Bazioti, C.
    Galeckas, A.
    Svensson, B. G.
    Kuznetsov, A. Yu
    Persson, C.
    Prytz, O.
    Vines, L.
    PHYSICAL REVIEW B, 2019, 100 (16)
  • [4] Band-gap tailoring and visible-light-driven photocatalytic performance of porous (GaN)1-x(ZnO)x solid solution
    Wu, Aimin
    Li, Jing
    Liu, Baodan
    Yang, Wenjin
    Jiang, Yanan
    Liu, Lusheng
    Zhang, Xinglai
    Xiong, Changmin
    Jiang, Xin
    DALTON TRANSACTIONS, 2017, 46 (08) : 2643 - 2652
  • [5] Structural and Band Gap Investigation of GaN:ZnO Heterojunction Solid Solution Photocatalyst Probed by Soft X-ray Spectroscopy
    McDermott, E. J.
    Kurmaev, E. Z.
    Boyko, T. D.
    Finkelstein, L. D.
    Green, R. J.
    Maeda, K.
    Domen, K.
    Moewes, A.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (14): : 7694 - 7700
  • [6] Band-Gap Tunable 2D Hexagonal (GaN)1-x(ZnO)x Solid-Solution Nanosheets for Photocatalytic Water Splitting
    Li, Jing
    Yang, Wenjin
    Wu, Aimin
    Zhang, Xinglai
    Xu, Tingting
    Liu, Baodan
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (07) : 8583 - 8591
  • [7] Band gap predictions of double perovskite oxides using machine learning
    Talapatra, Anjana
    Uberuaga, Blas Pedro
    Stanek, Christopher Richard
    Pilania, Ghanshyam
    COMMUNICATIONS MATERIALS, 2023, 4 (01)
  • [8] Band gap predictions of double perovskite oxides using machine learning
    Anjana Talapatra
    Blas Pedro Uberuaga
    Christopher Richard Stanek
    Ghanshyam Pilania
    Communications Materials, 4
  • [9] Enhancing predictions of experimental band gap using machine learning and knowledge transfer
    Ko, Taeseo
    Park, Taehyun
    Kim, Minseon
    Min, Kyoungmin
    MATERIALS TODAY COMMUNICATIONS, 2024, 41
  • [10] Band-gap tailoring and visible-light-driven photocatalytic performance of porous (GaN)1-x(ZnO)x solid solution (vol 46, pg 2643, 2017)
    Wu, Aimin
    Li, Jing
    Liu, Baodan
    Yang, Wenjin
    Jiang, Yanan
    Liu, Lusheng
    Zhang, Xinglai
    Xiong, Changmin
    Jiang, Xin
    DALTON TRANSACTIONS, 2017, 46 (14) : 4860 - 4860